Week 14, Taylor Series Approximations: 2-8 May

This week, we’ll work out some Taylor Series expansions of popular functions.

\(f(x) = \frac {1}{(1−x)}\)

\(f(x) = e^x\)

\(f(x) = ln(1 + x)\)

\(f(x) = x^{1/2}\)

For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as an R-Markdown document.

Solutions

To calculate the expansions of the given functions we use the Theorem below

Theorem: Function and Taylor Series Equality

\[f(x) = \sum_{n=0}^{\infty} \frac {f^{(n)}(c)}{n!} (x-c)^{n}\]


1. \(f(x) = \frac {1}{(1−x)}\)

Find first derivatives for the given function f(x):

\(f^{(0)}(c) = \frac {1}{(1-c)}\)

\(f^{(1)}(c) = \frac {1}{(1-c)^{2}}\)

\(f^{(2)}(c) = \frac {2}{(1-c)^{3}}\)

\(f^{(3)}(c) = \frac {6}{(1-c)^{4}}\)

\(f^{(4)}(c) = \frac {24}{(1-c)^{5}}\)


Thus, the Taylor series expansion for f(x) converges over the interval \((-1, 1)\) and can be defined as:

\(f(x) \approx P(x) = \frac {1}{(1-c) 0!}(x-c)^{0} + \frac {1}{(1-c)^{2} 1!} (x-c)^{1} + \frac {2}{(1-c)^{3} 2!} (x-c)^{2} + \frac {6}{(1-c)^{3} 3!} (x-c)^{3} + \frac {24}{(1-c)^{4} 4!} (x-c)^{4} + ...\)


The sum notation for the expansion can be written as:

\[f(x) \approx P(x) = \sum_{n=0}^{\infty} \frac {1}{(1-c)^{n+1}} (x-c)^{n}\]

Setting c = 0 gives the Maclaurin Series of f(x):

\[f(x) \approx P(x) = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + x^{4} + ...\]


2. \(f(x) = e^x\)

Find first derivatives for the given function f(x):

\(f^{(0)}(c) = e^{c}\)

\(f^{(1)}(c) = e^{c}\)

\(f^{(2)}(c) = e^{c}\)

\(f^{(3)}(c) = e^{c}\)

\(f^{(4)}(c) = e^{c}\)


Thus, the Taylor series expansion for f(x) converges over the interval \((-\infty, \infty)\) and can be defined as:

\(f(x) \approx P(x) = \frac {e^{c}}{0!}(x-c)^{0} + \frac {e^{c}}{1!}(x-c)^{1} + \frac {e^{c}}{2!}(x-c)^{2} + \frac {e^{c}}{3!}(x-c)^{3} + ...\)


The sum notation for the expansion can be written as:

\[f(x) \approx P(x) = e^{c} \sum_{n=0}^{\infty} \frac {(x-c)^{n}}{n!} \]

Setting c = 0 gives the Maclaurin Series of f(x):

\[f(x) \approx P(x) = \sum_{n=0}^{\infty} \frac {x^{n}}{n!} = 1 + x + \frac {x^{2}}{2!} + \frac {x^{3}}{3!} + \frac {x^{4}}{4!} + ...\]


3. \(f(x) = ln(1 + x)\)

Find first derivatives for the given function f(x):

\(f^{(0)}(c) = ln(1 + c)\)

\(f^{(1)}(c) = \frac {1}{c+1}\)

\(f^{(2)}(c) = -\frac {1}{(c+1)^{2}}\)

\(f^{(3)}(c) = \frac {2}{(c+1)^{3}}\)

\(f^{(4)}(c) = -\frac {6}{(c+1)^{4}}\)


Thus, the Taylor series expansion for f(x) converges over the interval \((-1, 1)\) and can be defined as:

\(f(x) \approx P(x) = P(x) = \frac {ln(1+c)}{0!}(x-c)^{0} + \frac {1}{(c+1)1!}(x-c)^{1} - \frac {1}{(c+1)^{2}2!}(x-c)^{2} + \frac {2}{(c+1)^{3}3!}(x-c)^{3} - \frac {6}{(c+1)^{4}4!}(x-c)^{43} + ...\)


The sum notation for the expansion can be written as:

\[f(x) \approx P(x) = ln(1+c) + \sum_{n=1}^{\infty} (-1)^{n+1} \frac {(x-c)^{n}}{n(c+1)^{n}} \]

Setting c = 0 gives the Maclaurin Series of f(x):

\[f(x) \approx P(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac {(x)^{n}}{n} = x - \frac {x^{2}}{2} + \frac {x^{3}}{3} - \frac {x^{4}}{4} + ...\]


4. \(f(x) = x^{1/2}\)

Find first derivatives for the given function f(x):

\(f^{(0)}(c) = c^{1/2}\)

\(f^{(1)}(c) = \frac {1}{2 (c^{1/2})}\)

\(f^{(2)}(c) = -\frac {1}{4 (c^{3/2})}\)

\(f^{(3)}(c) = \frac {3}{8 (c^{5/2})}\)

\(f^{(4)}(c) = -\frac {15}{16 (c^{7/2})}\)


Thus, the Taylor series expansion for f(x) converges over the interval \([0, \infty)\) and can be defined as:

\(f(x) \approx P(x) = c^{1/2} + \frac {1}{2 (c^{1/2}) 1!} (x-1)^{1} - \frac {1}{4 (c^{3/2}) 2!} (x-2)^{2} + \frac {3}{8 (c^{5/2}) 3!} (x-3)^{3} - \frac {15}{16 (c^{7/2}) 4!} (x-4)^{4} + ...\)


The sum notation for the expansion can be written as:

\[f(x) \approx P(x) = c^{1/2} + \sum_{n=1}^{\infty} (-1)^{n+1} \binom{1/2}{n}(x-c)^{n} (c^{1/2-n}) \]

Setting c = 0 gives the Maclaurin Series of f(x):

\[f(x) \approx P(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \binom{1/2}{n}x^{n}\]


LS0tDQp0aXRsZTogIkRBVEE2MDUgLSBIb21ld29yayAxNCINCmF1dGhvcjogIkVzdGViYW4gQXJhbWF5byINCmRhdGU6ICIyMDIyLTA1LTA3Ig0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBnbG9iYWwtb3B0aW9ucywgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvPVRSVUUsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgY29sbGFwc2UgPSBGQUxTRSwNCiAgICAgICAgICAgICAgICAgICAgICBjb21tZW50ID0gIiM+IiApDQpgYGANCg0KDQojIFdlZWsgMTQsIFRheWxvciBTZXJpZXMgQXBwcm94aW1hdGlvbnM6IDItOCBNYXkNCg0KVGhpcyB3ZWVrLCB3ZeKAmWxsIHdvcmsgb3V0IHNvbWUgVGF5bG9yIFNlcmllcyBleHBhbnNpb25zIG9mIHBvcHVsYXIgZnVuY3Rpb25zLg0KDQokZih4KSA9IFxmcmFjIHsxfXsoMeKIkngpfSQNCg0KJGYoeCkgPSBlXngkDQoNCiRmKHgpID0gbG4oMSArIHgpJA0KDQokZih4KSA9IHheezEvMn0kDQoNCkZvciBlYWNoIGZ1bmN0aW9uLCBvbmx5IGNvbnNpZGVyIGl0cyB2YWxpZCByYW5nZXMgYXMgaW5kaWNhdGVkIGluIHRoZSBub3RlcyB3aGVuIHlvdSBhcmUgY29tcHV0aW5nIHRoZSBUYXlsb3IgU2VyaWVzIGV4cGFuc2lvbi4gUGxlYXNlIHN1Ym1pdCB5b3VyIGFzc2lnbm1lbnQgYXMgYW4gUi1NYXJrZG93biBkb2N1bWVudC4NCg0KDQojIyBTb2x1dGlvbnMNCg0KVG8gY2FsY3VsYXRlIHRoZSBleHBhbnNpb25zIG9mIHRoZSBnaXZlbiBmdW5jdGlvbnMgd2UgdXNlIHRoZSBUaGVvcmVtIGJlbG93DQoNCioqVGhlb3JlbTogRnVuY3Rpb24gYW5kIFRheWxvciBTZXJpZXMgRXF1YWxpdHkqKg0KDQokJGYoeCkgPSBcc3VtX3tuPTB9XntcaW5mdHl9IFxmcmFjIHtmXnsobil9KGMpfXtuIX0gKHgtYylee259JCQNCg0KPGJyPg0KDQojIyMgMS4gJGYoeCkgPSBcZnJhYyB7MX17KDHiiJJ4KX0kDQoNCkZpbmQgZmlyc3QgZGVyaXZhdGl2ZXMgZm9yIHRoZSBnaXZlbiBmdW5jdGlvbiBmKHgpOg0KDQokZl57KDApfShjKSA9IFxmcmFjIHsxfXsoMS1jKX0kDQoNCiRmXnsoMSl9KGMpID0gXGZyYWMgezF9eygxLWMpXnsyfX0kDQoNCiRmXnsoMil9KGMpID0gXGZyYWMgezJ9eygxLWMpXnszfX0kDQoNCiRmXnsoMyl9KGMpID0gXGZyYWMgezZ9eygxLWMpXns0fX0kDQoNCiRmXnsoNCl9KGMpID0gXGZyYWMgezI0fXsoMS1jKV57NX19JA0KDQo8YnI+DQoNClRodXMsIHRoZSBUYXlsb3Igc2VyaWVzIGV4cGFuc2lvbiBmb3IgZih4KSBjb252ZXJnZXMgb3ZlciB0aGUgaW50ZXJ2YWwgJCgtMSwgMSkkIGFuZCBjYW4gYmUgZGVmaW5lZCBhczoNCg0KJGYoeCkgXGFwcHJveCBQKHgpID0gXGZyYWMgezF9eygxLWMpIDAhfSh4LWMpXnswfSArIFxmcmFjIHsxfXsoMS1jKV57Mn0gMSF9ICh4LWMpXnsxfSArIFxmcmFjIHsyfXsoMS1jKV57M30gMiF9ICh4LWMpXnsyfSArIFxmcmFjIHs2fXsoMS1jKV57M30gMyF9ICh4LWMpXnszfSArIFxmcmFjIHsyNH17KDEtYyleezR9IDQhfSAoeC1jKV57NH0gKyAuLi4kDQoNCjxicj4NCg0KVGhlIHN1bSBub3RhdGlvbiBmb3IgdGhlIGV4cGFuc2lvbiBjYW4gYmUgd3JpdHRlbiBhczoNCg0KJCRmKHgpIFxhcHByb3ggUCh4KSAgPSBcc3VtX3tuPTB9XntcaW5mdHl9IFxmcmFjIHsxfXsoMS1jKV57bisxfX0gKHgtYylee259JCQNCjxicj4NCg0KU2V0dGluZyBjID0gMCBnaXZlcyB0aGUgTWFjbGF1cmluIFNlcmllcyBvZiBmKHgpOg0KDQokJGYoeCkgXGFwcHJveCBQKHgpICA9IFxzdW1fe249MH1ee1xpbmZ0eX0geF57bn0gPSAxICsgeCArIHheezJ9ICsgeF57M30gKyB4Xns0fSArIC4uLiQkDQoNCjxicj4NCg0KIyMjIDIuICRmKHgpID0gZV54JA0KDQpGaW5kIGZpcnN0IGRlcml2YXRpdmVzIGZvciB0aGUgZ2l2ZW4gZnVuY3Rpb24gZih4KToNCg0KJGZeeygwKX0oYykgPSBlXntjfSQNCg0KJGZeeygxKX0oYykgPSBlXntjfSQNCg0KJGZeeygyKX0oYykgPSBlXntjfSQNCg0KJGZeeygzKX0oYykgPSBlXntjfSQNCg0KJGZeeyg0KX0oYykgPSBlXntjfSQNCg0KPGJyPg0KDQpUaHVzLCB0aGUgVGF5bG9yIHNlcmllcyBleHBhbnNpb24gZm9yIGYoeCkgY29udmVyZ2VzIG92ZXIgdGhlIGludGVydmFsICQoLVxpbmZ0eSwgXGluZnR5KSQgYW5kIGNhbiBiZSBkZWZpbmVkIGFzOg0KDQokZih4KSBcYXBwcm94IFAoeCkgPSBcZnJhYyB7ZV57Y319ezAhfSh4LWMpXnswfSArIFxmcmFjIHtlXntjfX17MSF9KHgtYyleezF9ICsgXGZyYWMge2Vee2N9fXsyIX0oeC1jKV57Mn0gKyBcZnJhYyB7ZV57Y319ezMhfSh4LWMpXnszfSArIC4uLiQNCg0KPGJyPg0KDQpUaGUgc3VtIG5vdGF0aW9uIGZvciB0aGUgZXhwYW5zaW9uIGNhbiBiZSB3cml0dGVuIGFzOg0KDQokJGYoeCkgXGFwcHJveCBQKHgpID0gZV57Y30gXHN1bV97bj0wfV57XGluZnR5fSBcZnJhYyB7KHgtYylee259fXtuIX0gJCQNCjxicj4NCg0KU2V0dGluZyBjID0gMCBnaXZlcyB0aGUgTWFjbGF1cmluIFNlcmllcyBvZiBmKHgpOg0KDQokJGYoeCkgXGFwcHJveCBQKHgpICA9IFxzdW1fe249MH1ee1xpbmZ0eX0gXGZyYWMge3hee259fXtuIX0gPSAxICsgeCArIFxmcmFjIHt4XnsyfX17MiF9ICsgXGZyYWMge3heezN9fXszIX0gKyBcZnJhYyB7eF57NH19ezQhfSArIC4uLiQkDQoNCg0KPGJyPg0KDQoNCiMjIyAzLiAkZih4KSA9IGxuKDEgKyB4KSQNCg0KRmluZCBmaXJzdCBkZXJpdmF0aXZlcyBmb3IgdGhlIGdpdmVuIGZ1bmN0aW9uIGYoeCk6DQoNCiRmXnsoMCl9KGMpID0gbG4oMSArIGMpJA0KDQokZl57KDEpfShjKSA9IFxmcmFjIHsxfXtjKzF9JA0KDQokZl57KDIpfShjKSA9IC1cZnJhYyB7MX17KGMrMSleezJ9fSQNCg0KJGZeeygzKX0oYykgPSBcZnJhYyB7Mn17KGMrMSleezN9fSQNCg0KJGZeeyg0KX0oYykgPSAtXGZyYWMgezZ9eyhjKzEpXns0fX0kDQoNCjxicj4NCg0KVGh1cywgdGhlIFRheWxvciBzZXJpZXMgZXhwYW5zaW9uIGZvciBmKHgpIGNvbnZlcmdlcyBvdmVyIHRoZSBpbnRlcnZhbCAkKC0xLCAxKSQgYW5kIGNhbiBiZSBkZWZpbmVkIGFzOg0KDQokZih4KSBcYXBwcm94IFAoeCkgPSBQKHgpID0gXGZyYWMge2xuKDErYyl9ezAhfSh4LWMpXnswfSArIFxmcmFjIHsxfXsoYysxKTEhfSh4LWMpXnsxfSAtIFxmcmFjIHsxfXsoYysxKV57Mn0yIX0oeC1jKV57Mn0gKyBcZnJhYyB7Mn17KGMrMSleezN9MyF9KHgtYyleezN9IC0gXGZyYWMgezZ9eyhjKzEpXns0fTQhfSh4LWMpXns0M30gKyAuLi4kDQoNCjxicj4NCg0KVGhlIHN1bSBub3RhdGlvbiBmb3IgdGhlIGV4cGFuc2lvbiBjYW4gYmUgd3JpdHRlbiBhczoNCg0KJCRmKHgpIFxhcHByb3ggUCh4KSA9IGxuKDErYykgKyBcc3VtX3tuPTF9XntcaW5mdHl9ICgtMSlee24rMX0gXGZyYWMgeyh4LWMpXntufX17bihjKzEpXntufX0gJCQNCjxicj4NCg0KU2V0dGluZyBjID0gMCBnaXZlcyB0aGUgTWFjbGF1cmluIFNlcmllcyBvZiBmKHgpOg0KDQokJGYoeCkgXGFwcHJveCBQKHgpID0gXHN1bV97bj0xfV57XGluZnR5fSAoLTEpXntuKzF9IFxmcmFjIHsoeClee259fXtufSA9IHggLSBcZnJhYyB7eF57Mn19ezJ9ICsgXGZyYWMge3heezN9fXszfSAtIFxmcmFjIHt4Xns0fX17NH0gKyAuLi4kJA0KDQoNCg0KPGJyPg0KDQoNCiMjIyA0LiAkZih4KSA9IHheezEvMn0kDQoNCkZpbmQgZmlyc3QgZGVyaXZhdGl2ZXMgZm9yIHRoZSBnaXZlbiBmdW5jdGlvbiBmKHgpOg0KDQokZl57KDApfShjKSA9IGNeezEvMn0kDQoNCiRmXnsoMSl9KGMpID0gXGZyYWMgezF9ezIgKGNeezEvMn0pfSQNCg0KJGZeeygyKX0oYykgPSAtXGZyYWMgezF9ezQgKGNeezMvMn0pfSQNCg0KJGZeeygzKX0oYykgPSBcZnJhYyB7M317OCAoY157NS8yfSl9JA0KDQokZl57KDQpfShjKSA9IC1cZnJhYyB7MTV9ezE2IChjXns3LzJ9KX0kDQoNCjxicj4NCg0KVGh1cywgdGhlIFRheWxvciBzZXJpZXMgZXhwYW5zaW9uIGZvciBmKHgpIGNvbnZlcmdlcyBvdmVyIHRoZSBpbnRlcnZhbCAkWzAsIFxpbmZ0eSkkIGFuZCBjYW4gYmUgZGVmaW5lZCBhczoNCg0KJGYoeCkgXGFwcHJveCBQKHgpID0gY157MS8yfSArIFxmcmFjIHsxfXsyIChjXnsxLzJ9KSAxIX0gKHgtMSleezF9IC0gXGZyYWMgezF9ezQgKGNeezMvMn0pIDIhfSAoeC0yKV57Mn0gKyBcZnJhYyB7M317OCAoY157NS8yfSkgMyF9ICh4LTMpXnszfSAtIFxmcmFjIHsxNX17MTYgKGNeezcvMn0pIDQhfSAoeC00KV57NH0gKyAuLi4kDQoNCjxicj4NCg0KVGhlIHN1bSBub3RhdGlvbiBmb3IgdGhlIGV4cGFuc2lvbiBjYW4gYmUgd3JpdHRlbiBhczoNCg0KJCRmKHgpIFxhcHByb3ggUCh4KSA9IGNeezEvMn0gKyBcc3VtX3tuPTF9XntcaW5mdHl9ICgtMSlee24rMX0gXGJpbm9tezEvMn17bn0oeC1jKV57bn0gKGNeezEvMi1ufSkgJCQNCjxicj4NCg0KU2V0dGluZyBjID0gMCBnaXZlcyB0aGUgTWFjbGF1cmluIFNlcmllcyBvZiBmKHgpOg0KDQokJGYoeCkgXGFwcHJveCBQKHgpID0gXHN1bV97bj0xfV57XGluZnR5fSAoLTEpXntuKzF9IFxiaW5vbXsxLzJ9e259eF57bn0kJA0KDQoNCg0KPGJyPg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=