Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.
Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio (Mendenhall, Beaver, and Beaver 2006).
Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.(Walpole, Myers, and Myers 2012)
Esta distribución, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,
La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o
El número medio de reparaciones necesarias en 10 kms. de una autopista o,
El número promedio de fugas de agua en tubería en un lapso 3 meses.
El número de focos promedio que fallan en una cantidad de lote de 1000 focos.
El número medio de fugas en 100 kms.de tubería, entre otros (Anderson, Sweeney, and Williams 2008).
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:
\(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).
\(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.
\(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)
\(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).
Propiedades de un evento Poisson:
Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:
El los siguiente ejercicios se hace uso de funciones de distribución para Poisson en R, al igual que otras de las distribuciones de probabilidad, R trae consigo funciones de paquete base que ya permiten calcular la probabilidad, la densidad y la generación de números aleatorios, entre otras.
De igual modo se tienen funciones previamente codificadas que generan los mismos resultados en la dirección: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r
library(ggplot2)
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r")
Se describen ejercicios en donde se encuentra la función de distribución
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson, Sweeney, and Williams 2008)
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.
Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:
Inicializando variables y valores
media <- 10
x <- 5
Utilizando la función creada conforme a la fórmula
prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378"
Utilizando la función dpois()
prob2 <- round(dpois(x = 5, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
options(scipen=999) # Notación normal
tabla <- data.frame(x=0:25, f.prob.x = round(dpois(x = 0:25, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q=0:25, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.0000 0.00004539993
## 2 1 0.0005 0.00049939923
## 3 2 0.0023 0.00276939572
## 4 3 0.0076 0.01033605068
## 5 4 0.0189 0.02925268808
## 6 5 0.0378 0.06708596288
## 7 6 0.0631 0.13014142088
## 8 7 0.0901 0.22022064660
## 9 8 0.1126 0.33281967875
## 10 9 0.1251 0.45792971447
## 11 10 0.1251 0.58303975019
## 12 11 0.1137 0.69677614630
## 13 12 0.0948 0.79155647639
## 14 13 0.0729 0.86446442262
## 15 14 0.0521 0.91654152707
## 16 15 0.0347 0.95125959670
## 17 16 0.0217 0.97295839022
## 18 17 0.0128 0.98572238640
## 19 18 0.0071 0.99281349540
## 20 19 0.0037 0.99654565802
## 21 20 0.0019 0.99841173934
## 22 21 0.0009 0.99930034949
## 23 22 0.0004 0.99970426319
## 24 23 0.0002 0.99987987785
## 25 24 0.0001 0.99995305062
## 26 25 0.0000 0.99998231973
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]
i <- 10
tabla$f.acum[i + 1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583039750192985"
ppois() determina la probabilidad acumulada de una distribución Poisson.
prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583"
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[ 10 = 15\] \[ ? = 3\]
Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.
\[ \mu = 2 \]
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]
Entonces ….
media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"
Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)
La varianza es igual a \(10\)
La raiz cuadrada de \(\sqrt{10}\)
sqrt(media)
## [1] 1.414214
El valor esperado de la cantidad de automóviles en 15 minutos es igual a 10 autos, y según esa media, la probabilidad de que en exactamente 15 minutos lleguen 5 es una probabilidad considerablemente baja de 0.0378 o el 3.78%.
Las medidas de dispersión nos dicen que las probabilidades se alejan de la media un promedio de 1.41 según la desviación estándar.
Notamos que entre más cerca esté el valor de x de la media de 10, mayor es la probabilidad.
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí (Walpole, Myers, and Myers 2012).
¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de dias por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.
n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2
La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)
tabla <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:10, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353353
## 2 1 0.2707 0.4060058
## 3 2 0.2707 0.6766764
## 4 3 0.1804 0.8571235
## 5 4 0.0902 0.9473470
## 6 5 0.0361 0.9834364
## 7 6 0.0120 0.9954662
## 8 7 0.0034 0.9989033
## 9 8 0.0009 0.9997626
## 10 9 0.0002 0.9999535
## 11 10 0.0000 0.9999917
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\(P(x=1)\)
Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:
i <- 1
prob <- tabla$f.prob.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es: 0.2707"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es: 0.2707"
i <- 3
prob <- round(tabla$f.acum.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es: 0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es: 0.8571"
La probabilidad de que haya un accidente en un día es igual al 0.005, y según ese valor, la probabilidad de que en exactamente 400 días llegue a haber un accidente es una probabilidad considerablemente media-baja de 0.2707 o el 27.07%.
La cantidad de que haya a lo más tres días con un accidente es de 0.8571 o el 85.71%, algo que es demasiado alto y que representa un riesgo para los trabajadores.
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) (Walpole, Myers, and Myers 2012).
media <- 5
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:20, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.006737947
## 2 1 0.03368973 0.040427682
## 3 2 0.08422434 0.124652019
## 4 3 0.14037390 0.265025915
## 5 4 0.17546737 0.440493285
## 6 5 0.17546737 0.615960655
## 7 6 0.14622281 0.762183463
## 8 7 0.10444486 0.866628326
## 9 8 0.06527804 0.931906365
## 10 9 0.03626558 0.968171943
## 11 10 0.01813279 0.986304731
## 12 11 0.00824218 0.994546908
## 13 12 0.00343424 0.997981148
## 14 13 0.00132086 0.999302010
## 15 14 0.00047174 0.999773746
## 16 15 0.00015725 0.999930992
## 17 16 0.00004914 0.999980131
## 18 17 0.00001445 0.999994584
## 19 18 0.00000401 0.999998598
## 20 19 0.00000106 0.999999655
## 21 20 0.00000026 0.999999919
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(X \leq 3)\]
\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]
i <- 3
prob <- tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5 %"
\[ 1 - P(X \leq 1) \] \[ 1 - (P(X=0) + P(x=1))\]
i <- 1
prob <- 1 - tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
El valor esperado de la cantidad de automóviles que fallen en un año es igual a 5 autos, y según esa media, la probabilidad de que en exactamente en un año lleguen a haber por lo menos 3 fallas es una probabilidad media-baja de 26.50%.
También, la probabilidad de que más de un automóvil falle en un año es bastante alta (del 95%), lo que sugiere que un solo fallo sea un evento improbable, ya que la media es de 5.
Suponga que, en promedio, \(1 \text { persona en }1000\)
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan, encuentre la probabilidad de que \(6, 7 \text { u } 8\) de las formas contengan un error.(walpole2007?). Ejercicio 5.65, Pág. 165.
\[ P(x=6:8) = P(x=6) + P(x=7) + P(x=8) \]
prob <- 1 / 1000
media <- prob * 10000
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8), f.acum.x = round(ppois(q = 0:20, lambda = media),8))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00004540 0.00004540
## 2 1 0.00045400 0.00049940
## 3 2 0.00227000 0.00276940
## 4 3 0.00756665 0.01033605
## 5 4 0.01891664 0.02925269
## 6 5 0.03783327 0.06708596
## 7 6 0.06305546 0.13014142
## 8 7 0.09007923 0.22022065
## 9 8 0.11259903 0.33281968
## 10 9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
\[ P(x \text { de 6 a }8) = P(x=6) + P(x=7) + P(x=8) \]
Se suman las probabilidades
paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es: 26.5734 %"
El problema especifica que una persona de cada 1000 comete un error en la declaración anual. En el espacio muestral de 10,000 declaraciones, se espera que hayan 10 errores.
La probabilidad de que sean 6 errores es de 0.0631 o el 6.31%, que siguiere que sea muy poco probable.
La probabilidad de que sean 7 errores es de 0.0901 o 9.01%, lo que significa que es poco probable.
La probabilidad de que sean 8 errores es de 0.1126 o 11.26%, lo que debería ser considerado bajo.
La probabilidad de que sean 6, 7 u 8 errores es de 26.57%, lo que es considerado una probabilidad media-baja.
Estos datos sugieren que entre más se acerque la variable a 10, mayor probabilidad tendrá.