Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.
Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio (Mendenhall, Beaver, and Beaver 2006).
Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.(Walpole, Myers, and Myers 2012)
Esta distribución, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,
La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o
El número medio de reparaciones necesarias en 10 kms. de una autopista o,
El número promedio de fugas de agua en tubería en un lapso 3 meses.
El número de focos promedio que fallan en una cantidad de lote de 1000 focos.
El número medio de fugas en 100 kms.de tubería, entre otros (Anderson, Sweeney, and Williams 2008).
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:
\(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).
\(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.
\(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)
\(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).
Propiedades de un evento Poisson:
Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:
El los siguiente ejercicios se hace uso de funciones de distribución para Poisson en R, al igual que otras de las distribuciones de probabilidad, R trae consigo funciones de paquete base que ya permiten calcular la probabilidad, la densidad y la generación de números aleatorios, entre otras.
De igual modo se tienen funciones previamente codificadas que generan los mismos resultados en la dirección: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r
library(ggplot2)
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r")
Se describen ejercicios en donde se encuentra la función de distribución
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(Anderson, Sweeney, and Williams 2008)
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.
Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:
Inicializando variables y valores
media <- 10
x <- 5
Utilizando la función creada conforme a la fórmula
prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.0378"
Utilizando la función dpois()
prob2 <- round(dpois(x = 5, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
options(scipen=999) # Notación normal
tabla <- data.frame(x=0:25, f.prob.x = round(dpois(x = 0:25, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q=0:25, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.0000 0.00004539993
## 2 1 0.0005 0.00049939923
## 3 2 0.0023 0.00276939572
## 4 3 0.0076 0.01033605068
## 5 4 0.0189 0.02925268808
## 6 5 0.0378 0.06708596288
## 7 6 0.0631 0.13014142088
## 8 7 0.0901 0.22022064660
## 9 8 0.1126 0.33281967875
## 10 9 0.1251 0.45792971447
## 11 10 0.1251 0.58303975019
## 12 11 0.1137 0.69677614630
## 13 12 0.0948 0.79155647639
## 14 13 0.0729 0.86446442262
## 15 14 0.0521 0.91654152707
## 16 15 0.0347 0.95125959670
## 17 16 0.0217 0.97295839022
## 18 17 0.0128 0.98572238640
## 19 18 0.0071 0.99281349540
## 20 19 0.0037 0.99654565802
## 21 20 0.0019 0.99841173934
## 22 21 0.0009 0.99930034949
## 23 22 0.0004 0.99970426319
## 24 23 0.0002 0.99987987785
## 25 24 0.0001 0.99995305062
## 26 25 0.0000 0.99998231973
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]
i <- 10
tabla$f.acum[i + 1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583039750192985"
ppois() determina la probabilidad acumulada de una distribución Poisson.
prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es: 0.583"
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[ 10 = 15\] \[ ? = 3\]
Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.
\[ \mu = 2 \]
\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]
Entonces ….
media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"
Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)
La varianza es igual a \(10\)
La raiz cuadrada de \(\sqrt{10}\)
sqrt(media)
## [1] 1.414214
Conociendo el promedio de carros que pasan en 15 minutos podemos usar la formula para calcular las probabilidades de un evento Poisson, en este caso el promedio es de 10 podemos con eso calcular las probabilidades de que pasen 5 carros en 15 minutos
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí (Walpole, Myers, and Myers 2012).
¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de dias por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.
n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2
La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)
tabla <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:10, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353353
## 2 1 0.2707 0.4060058
## 3 2 0.2707 0.6766764
## 4 3 0.1804 0.8571235
## 5 4 0.0902 0.9473470
## 6 5 0.0361 0.9834364
## 7 6 0.0120 0.9954662
## 8 7 0.0034 0.9989033
## 9 8 0.0009 0.9997626
## 10 9 0.0002 0.9999535
## 11 10 0.0000 0.9999917
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\(P(x=1)\)
Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:
i <- 1
prob <- tabla$f.prob.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es: 0.2707"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es: 0.2707"
i <- 3
prob <- round(tabla$f.acum.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es: 0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es: 0.8571"
Conociendo las probabilidades de que un accidente pase en un dia cualquiera podemos calcular las probabilidades de que pase un accidente en un dia cualquiera en un rango de 400 en este caso la probabilidad es .2702 ### Fabricante de automóviles
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) (Walpole, Myers, and Myers 2012).
media <- 5
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:20, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.006737947
## 2 1 0.03368973 0.040427682
## 3 2 0.08422434 0.124652019
## 4 3 0.14037390 0.265025915
## 5 4 0.17546737 0.440493285
## 6 5 0.17546737 0.615960655
## 7 6 0.14622281 0.762183463
## 8 7 0.10444486 0.866628326
## 9 8 0.06527804 0.931906365
## 10 9 0.03626558 0.968171943
## 11 10 0.01813279 0.986304731
## 12 11 0.00824218 0.994546908
## 13 12 0.00343424 0.997981148
## 14 13 0.00132086 0.999302010
## 15 14 0.00047174 0.999773746
## 16 15 0.00015725 0.999930992
## 17 16 0.00004914 0.999980131
## 18 17 0.00001445 0.999994584
## 19 18 0.00000401 0.999998598
## 20 19 0.00000106 0.999999655
## 21 20 0.00000026 0.999999919
ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
\[P(X \leq 3)\]
\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]
i <- 3
prob <- tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es: 26.5 %"
\[ 1 - P(X \leq 1) \] \[ 1 - (P(X=0) + P(x=1))\]
i <- 1
prob <- 1 - tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es: 95.9572 %"
Nuevamente sabiendo que la cantidad de carros que experimentaran esta falla sea de un 5 podemosa calcular las probabilidades dentro de cualquier cantidad de carros ### Declaración de impuestos
Suponga que, en promedio, \(1 \text { persona en }1000\)
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan, encuentre la probabilidad de que \(6, 7 \text { u } 8\) de las formas contengan un error.(walpole2007?). Ejercicio 5.65, Pág. 165.
\[ P(x=6:8) = P(x=6) + P(x=7) + P(x=8) \]
prob <- 1 / 1000
media <- prob * 10000
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8), f.acum.x = round(ppois(q = 0:20, lambda = media),8))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00004540 0.00004540
## 2 1 0.00045400 0.00049940
## 3 2 0.00227000 0.00276940
## 4 3 0.00756665 0.01033605
## 5 4 0.01891664 0.02925269
## 6 5 0.03783327 0.06708596
## 7 6 0.06305546 0.13014142
## 8 7 0.09007923 0.22022065
## 9 8 0.11259903 0.33281968
## 10 9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
\[ P(x \text { de 6 a }8) = P(x=6) + P(x=7) + P(x=8) \]
Se suman las probabilidades
paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es: 26.5734 %"
Conociendo las probabilidades que que pase un evento entre una cantidad de sucesos, con su media podemos calcular las probabilidades de que pase sin importar la cantidad de sucesos y darle una aplicacion util y practica a este conociemiento.