Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict FIM with PP and AA (formula: FIM ~ PP + AA). The model explains a statistically significant and substantial proportion of variance (R2 = 0.38, F(2, 997) = 300.11, p < .001, adj. R2 = 0.37). The model's intercept, corresponding to PP = 0 and AA = 0, is at -0.28 (95% CI [-0.54, -0.01], t(997) = -2.05, p = 0.041). Within this model:
## 
##   - The effect of PP is statistically significant and positive (beta = 0.51, 95% CI [0.45, 0.57], t(997) = 16.63, p < .001; Std. beta = 0.42, 95% CI [0.37, 0.47])
##   - The effect of AA is statistically significant and positive (beta = 0.55, 95% CI [0.49, 0.61], t(997) = 17.94, p < .001; Std. beta = 0.45, 95% CI [0.40, 0.50])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict FIM with PP and AA (formula: FIM ~ PP + AA). The model's explanatory power is substantial (Tjur's R2 = 0.26). The model's intercept, corresponding to PP = 0 and AA = 0, is at -9.05 (95% CI [-10.42, -7.75], p < .001). Within this model:
## 
##   - The effect of PP is statistically significant and positive (beta = 1.54, 95% CI [1.27, 1.82], p < .001; Std. beta = 0.98, 95% CI [0.81, 1.15])
##   - The effect of AA is statistically significant and positive (beta = 1.58, 95% CI [1.31, 1.86], p < .001; Std. beta = 1.00, 95% CI [0.83, 1.19])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datos

FIM = Formación Inicial de Maestros

PP = Prácticas Pedagógicas

AA = Alfabetización académica

El Formación Inicial de Maestros es influenciada por la Prácticas Pedagógicas y por la Alfabetización académica

FIM ~ PP + AA

Análisis Factorial Exploratorio

factanal(nataliaSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = nataliaSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.426 0.616 0.605 0.591 0.619 0.444 0.366 0.351 0.415 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1 -0.170           0.858 
## i2  0.106           0.551 
## i3  0.168  -0.122   0.509 
## i4          0.631         
## i5          0.620         
## i6          0.725         
## i7  0.677   0.123         
## i8  0.844                 
## i9  0.764                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.824   1.347   1.317
## Proportion Var   0.203   0.150   0.146
## Cumulative Var   0.203   0.352   0.499
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000 -0.4703  0.5912
## Factor2  -0.470  1.0000  0.0867
## Factor3   0.591  0.0867  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 14.87 on 12 degrees of freedom.
## The p-value is 0.249
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Análisis Factorial Confirmatorio

Creamos el modelo

nataliaModel <- 
  "PP =~ i1 + i2 + i3
   AA =~ i4 + i5 + i6
   FIM =~ i7 + i8 + i9
   FIM ~ PP
   FIM ~ AA"

natalia.fit <- 
  cfa(nataliaModel, 
      data = nataliaSimData)

Revisamos las cargas

inspect(natalia.fit, 
        what = "std")$lambda
##       PP    AA   FIM
## i1 0.676 0.000 0.000
## i2 0.646 0.000 0.000
## i3 0.659 0.000 0.000
## i4 0.000 0.639 0.000
## i5 0.000 0.607 0.000
## i6 0.000 0.755 0.000
## i7 0.000 0.000 0.811
## i8 0.000 0.000 0.786
## i9 0.000 0.000 0.761

>.6

Evaluamos el modelo

summary(natalia.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                32.755
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.109
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2730.420
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.995
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9433.559
##   Loglikelihood unrestricted model (H1)      -9417.182
##                                                       
##   Akaike (AIC)                               18909.118
##   Bayesian (BIC)                             19012.181
##   Sample-size adjusted Bayesian (BIC)        18945.484
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.019
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.034
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.019
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   PP =~                                               
##     i1                1.000                           
##     i2                0.971    0.065   14.878    0.000
##     i3                1.119    0.075   15.015    0.000
##   AA =~                                               
##     i4                1.000                           
##     i5                0.970    0.068   14.355    0.000
##     i6                1.128    0.072   15.616    0.000
##   FIM =~                                              
##     i7                1.000                           
##     i8                0.927    0.037   24.763    0.000
##     i9                0.870    0.036   24.034    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   FIM ~                                               
##     PP                0.788    0.058   13.491    0.000
##     AA                0.779    0.058   13.345    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   PP ~~                                               
##     AA               -0.010    0.012   -0.855    0.393
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.316    0.020   15.521    0.000
##    .i2                0.349    0.021   16.545    0.000
##    .i3                0.434    0.027   16.136    0.000
##    .i4                0.385    0.023   17.071    0.000
##    .i5                0.427    0.024   17.936    0.000
##    .i6                0.254    0.021   12.379    0.000
##    .i7                0.239    0.016   14.560    0.000
##    .i8                0.244    0.015   15.775    0.000
##    .i9                0.253    0.015   16.795    0.000
##     PP                0.266    0.026   10.101    0.000
##     AA                0.265    0.028    9.614    0.000
##    .FIM               0.147    0.019    7.933    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

natalia_mean <- 
  nataliaSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

natalia_sd <- 
  nataliaSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

natalia_sd_mean <- 
  natalia_mean |> 
  bind_rows(natalia_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

natalia_cronbach_RE <-
  nataliaSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

natalia_cronbach_DE <-
  nataliaSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

natalia_cronbach_CD <-
  nataliaSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

natalia_cronbach <- 
  tibble(RE = natalia_cronbach_RE$alpha,
         DE = natalia_cronbach_DE$alpha,
         CD = natalia_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(natalia_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
         Cronbach, 
         promedio, 
         des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
                )
## Joining, by = "Variable_compuesta"
rm(natalia_mean,
   natalia_sd, 
   natalia_sd_mean)

natalia_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.70 3.51 0.76
DE 3 0.70 2.86 0.81
CD 3 0.83 2.66 0.84

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- nataliaSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- nataliaSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- nataliaSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

natalia_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(natalia_latent))
##       RE    DE   CD
## RE  1.00 -0.02 0.33
## DE -0.02  1.00 0.31
## CD  0.33  0.31 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.5189 0.0000
## DE 0.5189        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(natalia.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)