Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict DHP with EA and BL (formula: DHP ~ EA + BL). The model explains a statistically significant and substantial proportion of variance (R2 = 0.36, F(2, 997) = 285.02, p < .001, adj. R2 = 0.36). The model's intercept, corresponding to EA = 0 and BL = 0, is at 0.78 (95% CI [0.58, 0.98], t(997) = 7.69, p < .001). Within this model:
## 
##   - The effect of EA is statistically significant and positive (beta = 0.41, 95% CI [0.37, 0.46], t(997) = 16.82, p < .001; Std. beta = 0.42, 95% CI [0.38, 0.47])
##   - The effect of BL is statistically significant and positive (beta = 0.41, 95% CI [0.36, 0.45], t(997) = 16.62, p < .001; Std. beta = 0.42, 95% CI [0.37, 0.47])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict DHP with EA and BL (formula: DHP ~ EA + BL). The model's explanatory power is moderate (Tjur's R2 = 0.25). The model's intercept, corresponding to EA = 0 and BL = 0, is at 7.20 (95% CI [6.05, 8.42], p < .001). Within this model:
## 
##   - The effect of EA is statistically significant and negative (beta = -1.46, 95% CI [-1.74, -1.19], p < .001; Std. beta = -0.99, 95% CI [-1.18, -0.81])
##   - The effect of BL is statistically significant and negative (beta = -1.42, 95% CI [-1.70, -1.16], p < .001; Std. beta = -0.97, 95% CI [-1.16, -0.79])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

SEM Análisis

Simulación de datos

DHP = Desarrollo de Habilidades de Pensamiento

EA = Estilos de Aprendizaje

BL = Blended Learning

El Desarrollo de Habilidades de Pensamiento es influenciada por la Estilos de Aprendizaje y por la Blended Learning

DHP ~ EA + BL

Análisis Exploratorio

factanal(juanSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = juanSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.626 0.417 0.592 0.578 0.556 0.529 0.364 0.422 0.429 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1          0.554         
## i2          0.801         
## i3          0.634         
## i4                  0.638 
## i5                  0.664 
## i6                  0.685 
## i7  0.807                 
## i8  0.738                 
## i9  0.739                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.759   1.355   1.328
## Proportion Var   0.195   0.151   0.148
## Cumulative Var   0.195   0.346   0.494
## 
## Factor Correlations:
##         Factor1  Factor2  Factor3
## Factor1   1.000 -0.48246  0.55811
## Factor2  -0.482  1.00000 -0.00953
## Factor3   0.558 -0.00953  1.00000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 13.78 on 12 degrees of freedom.
## The p-value is 0.315
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

juanModel <- 
  "EA =~ i1 + i2 + i3
   BL =~ i4 + i5 + i6
   DHP =~ i7 + i8 + i9
   DHP ~ EA
   DHP ~ BL"

juan.fit <- 
  cfa(juanModel, 
      data = juanSimData)

Revisamos las cargas

inspect(juan.fit, 
        what = "std")$lambda
##       EA    BL   DHP
## i1 0.624 0.000 0.000
## i2 0.735 0.000 0.000
## i3 0.648 0.000 0.000
## i4 0.000 0.657 0.000
## i5 0.000 0.665 0.000
## i6 0.000 0.680 0.000
## i7 0.000 0.000 0.790
## i8 0.000 0.000 0.762
## i9 0.000 0.000 0.760

>.6

Evaluamos el modelo

summary(juan.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                24.612
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.427
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2535.257
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9910.249
##   Loglikelihood unrestricted model (H1)      -9897.943
##                                                       
##   Akaike (AIC)                               19862.498
##   Bayesian (BIC)                             19965.561
##   Sample-size adjusted Bayesian (BIC)        19898.864
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.005
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.026
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EA =~                                               
##     i1                1.000                           
##     i2                1.322    0.089   14.845    0.000
##     i3                1.158    0.081   14.378    0.000
##   BL =~                                               
##     i4                1.000                           
##     i5                0.995    0.068   14.577    0.000
##     i6                0.980    0.067   14.671    0.000
##   DHP =~                                              
##     i7                1.000                           
##     i8                0.913    0.041   22.496    0.000
##     i9                0.871    0.039   22.460    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   DHP ~                                               
##     EA                0.738    0.062   11.871    0.000
##     BL                0.587    0.051   11.571    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EA ~~                                               
##     BL                0.012    0.013    0.919    0.358
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.369    0.022   17.133    0.000
##    .i2                0.351    0.027   12.818    0.000
##    .i3                0.438    0.027   16.394    0.000
##    .i4                0.441    0.028   15.822    0.000
##    .i5                0.418    0.027   15.528    0.000
##    .i6                0.375    0.025   14.960    0.000
##    .i7                0.275    0.019   14.611    0.000
##    .i8                0.275    0.017   15.896    0.000
##    .i9                0.253    0.016   15.962    0.000
##     EA                0.236    0.026    9.243    0.000
##     BL                0.335    0.035    9.665    0.000
##    .DHP               0.202    0.021    9.612    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

juan_mean <- 
  juanSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

juan_sd <- 
  juanSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

juan_sd_mean <- 
  juan_mean |> 
  bind_rows(juan_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

juan_cronbach_RE <-
  juanSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

juan_cronbach_DE <-
  juanSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

juan_cronbach_CD <-
  juanSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

juan_cronbach <- 
  tibble(RE = juan_cronbach_RE$alpha,
         DE = juan_cronbach_DE$alpha,
         CD = juan_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(juan_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
         Cronbach, 
         promedio, 
         des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
                )
## Joining, by = "Variable_compuesta"
rm(juan_mean,
   juan_sd, 
   juan_sd_mean)

juan_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.71 2.73 0.78
DE 3 0.71 3.00 0.88
CD 3 0.81 2.86 0.86

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- juanSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- juanSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- juanSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

juan_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(juan_latent))
##      RE   DE   CD
## RE 1.00 0.02 0.28
## DE 0.02 1.00 0.29
## CD 0.28 0.29 1.00
## 
## n= 1000 
## 
## 
## P
##    RE    DE    CD   
## RE       0.431 0.000
## DE 0.431       0.000
## CD 0.000 0.000

Diagrama del modelo

semPaths(juan.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)