Artículo 4

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict RE with EE and IC (formula: RE ~ EE + IC). The model explains a statistically significant and substantial proportion of variance (R2 = 0.36, F(2, 997) = 275.64, p < .001, adj. R2 = 0.35). The model's intercept, corresponding to EE = 0 and IC = 0, is at 0.18 (95% CI [-0.05, 0.42], t(997) = 1.53, p = 0.126). Within this model:
## 
##   - The effect of EE is statistically significant and positive (beta = 0.51, 95% CI [0.46, 0.57], t(997) = 17.52, p < .001; Std. beta = 0.45, 95% CI [0.40, 0.50])
##   - The effect of IC is statistically significant and positive (beta = 0.43, 95% CI [0.38, 0.48], t(997) = 15.86, p < .001; Std. beta = 0.40, 95% CI [0.35, 0.45])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict RE with EE and IC (formula: RE ~ EE + IC). The model's explanatory power is moderate (Tjur's R2 = 0.24). The model's intercept, corresponding to EE = 0 and IC = 0, is at 7.95 (95% CI [6.78, 9.19], p < .001). Within this model:
## 
##   - The effect of EE is statistically significant and negative (beta = -1.72, 95% CI [-2.01, -1.45], p < .001; Std. beta = -1.06, 95% CI [-1.23, -0.89])
##   - The effect of IC is statistically significant and negative (beta = -1.17, 95% CI [-1.41, -0.93], p < .001; Std. beta = -0.77, 95% CI [-0.93, -0.61])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

SEM Análisis

Simulación de datos

RE = Racismo Escolar

EE = Etnoeducación

IC = Interculturalidad

El Racismo Escolar es influenciada por la Etnoeducacióny por la Interculturalidad

PC ~ EE + CRP

Análisis Exploratorio

factanal(johnSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = johnSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.598 0.462 0.635 0.507 0.547 0.517 0.403 0.333 0.392 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1  0.102           0.575 
## i2                  0.775 
## i3                  0.599 
## i4          0.706         
## i5          0.663         
## i6          0.692         
## i7  0.767                 
## i8  0.837                 
## i9  0.738                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.851   1.428   1.292
## Proportion Var   0.206   0.159   0.144
## Cumulative Var   0.206   0.364   0.508
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000 -0.4796  0.5274
## Factor2  -0.480  1.0000  0.0161
## Factor3   0.527  0.0161  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 8.41 on 12 degrees of freedom.
## The p-value is 0.752
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

johnModel <- 
  "EE =~ i1 + i2 + i3
   IC =~ i4 + i5 + i6
   RE =~ i7 + i8 + i9
   RE ~ EE
   RE ~ IC"

john.fit <- 
  cfa(johnModel, 
      data = johnSimData)

Revisamos las cargas

inspect(john.fit, 
        what = "std")$lambda
##       EE    IC    RE
## i1 0.659 0.000 0.000
## i2 0.696 0.000 0.000
## i3 0.607 0.000 0.000
## i4 0.000 0.694 0.000
## i5 0.000 0.680 0.000
## i6 0.000 0.695 0.000
## i7 0.000 0.000 0.774
## i8 0.000 0.000 0.806
## i9 0.000 0.000 0.788

>.6

Evaluamos el modelo

summary(john.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                19.376
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.732
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2668.520
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.003
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9416.917
##   Loglikelihood unrestricted model (H1)      -9407.229
##                                                       
##   Akaike (AIC)                               18875.835
##   Bayesian (BIC)                             18978.897
##   Sample-size adjusted Bayesian (BIC)        18912.200
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.019
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EE =~                                               
##     i1                1.000                           
##     i2                0.961    0.067   14.399    0.000
##     i3                0.811    0.059   13.744    0.000
##   IC =~                                               
##     i4                1.000                           
##     i5                1.102    0.070   15.824    0.000
##     i6                0.981    0.061   15.950    0.000
##   RE =~                                               
##     i7                1.000                           
##     i8                1.191    0.050   23.949    0.000
##     i9                1.245    0.053   23.580    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   RE ~                                                
##     EE                0.518    0.044   11.758    0.000
##     IC                0.577    0.048   12.043    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EE ~~                                               
##     IC                0.000    0.013    0.001    0.999
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.443    0.029   15.488    0.000
##    .i2                0.333    0.024   13.971    0.000
##    .i3                0.382    0.022   17.198    0.000
##    .i4                0.273    0.018   15.145    0.000
##    .i5                0.359    0.023   15.698    0.000
##    .i6                0.261    0.017   15.086    0.000
##    .i7                0.219    0.014   16.027    0.000
##    .i8                0.250    0.017   14.447    0.000
##    .i9                0.309    0.020   15.374    0.000
##     EE                0.339    0.035    9.569    0.000
##     IC                0.254    0.024   10.511    0.000
##    .RE                0.152    0.015    9.956    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

john_mean <- 
  johnSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

john_sd <- 
  johnSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

john_sd_mean <- 
  john_mean |> 
  bind_rows(john_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

john_cronbach_RE <-
  johnSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

john_cronbach_DE <-
  johnSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

john_cronbach_CD <-
  johnSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

john_cronbach <- 
  tibble(RE = john_cronbach_RE$alpha,
         DE = john_cronbach_DE$alpha,
         CD = john_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(john_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
         Cronbach, 
         promedio, 
         des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
                )
## Joining, by = "Variable_compuesta"
rm(john_mean,
   john_sd, 
   john_sd_mean)

john_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.69 2.90 0.88
DE 3 0.73 2.97 0.73
CD 3 0.83 2.75 0.74

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- johnSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- johnSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- johnSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

john_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(john_latent))
##       RE    DE   CD
## RE  1.00 -0.02 0.29
## DE -0.02  1.00 0.27
## CD  0.29  0.27 1.00
## 
## n= 1000 
## 
## 
## P
##    RE    DE    CD   
## RE       0.437 0.000
## DE 0.437       0.000
## CD 0.000 0.000

Diagrama del modelo

semPaths(john.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)