Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict PC with EE and CRP (formula: PC ~ EE + CRP). The model explains a statistically significant and substantial proportion of variance (R2 = 0.31, F(2, 997) = 219.34, p < .001, adj. R2 = 0.30). The model's intercept, corresponding to EE = 0 and CRP = 0, is at 0.33 (95% CI [0.06, 0.59], t(997) = 2.41, p = 0.016). Within this model:
## 
##   - The effect of EE is statistically significant and positive (beta = 0.44, 95% CI [0.38, 0.50], t(997) = 14.50, p < .001; Std. beta = 0.38, 95% CI [0.33, 0.44])
##   - The effect of CRP is statistically significant and positive (beta = 0.44, 95% CI [0.39, 0.50], t(997) = 16.52, p < .001; Std. beta = 0.44, 95% CI [0.39, 0.49])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict PC with EE and CRP (formula: PC ~ EE + CRP). The model's explanatory power is moderate (Tjur's R2 = 0.21). The model's intercept, corresponding to EE = 0 and CRP = 0, is at -8.13 (95% CI [-9.55, -6.79], p < .001). Within this model:
## 
##   - The effect of EE is statistically significant and positive (beta = 1.40, 95% CI [1.12, 1.69], p < .001; Std. beta = 0.81, 95% CI [0.65, 0.98])
##   - The effect of CRP is statistically significant and positive (beta = 1.48, 95% CI [1.22, 1.76], p < .001; Std. beta = 0.96, 95% CI [0.79, 1.14])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datos

PC = Pensamiento Crítico

EE = Estrategias de Enseñanza

CRP = Capacidad de Resolución de Problemas

El Pensamiento Crítico es influenciada por la Estrategias de Enseñanza y por la Capacidad de Resolución de Problemas

PC ~ EE + CRP

Análisis Exploratorio

factanal(janethSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = janethSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.572 0.523 0.590 0.547 0.600 0.504 0.314 0.376 0.401 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1                  0.656 
## i2                  0.708 
## i3                  0.608 
## i4          0.679         
## i5          0.633         
## i6          0.699         
## i7  0.812                 
## i8  0.789                 
## i9  0.693                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.766   1.361   1.311
## Proportion Var   0.196   0.151   0.146
## Cumulative Var   0.196   0.347   0.493
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000 -0.5155  0.5770
## Factor2  -0.515  1.0000 -0.0227
## Factor3   0.577 -0.0227  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 7.44 on 12 degrees of freedom.
## The p-value is 0.827
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

janethModel <- 
  "EE =~ i1 + i2 + i3
   CRP =~ i4 + i5 + i6
   PC =~ i7 + i8 + i9
   PC ~ EE
   PC ~ CRP"

janeth.fit <- 
  cfa(janethModel, 
      data = janethSimData)

Revisamos las cargas

inspect(janeth.fit, 
        what = "std")$lambda
##       EE   CRP    PC
## i1 0.655 0.000 0.000
## i2 0.678 0.000 0.000
## i3 0.648 0.000 0.000
## i4 0.000 0.666 0.000
## i5 0.000 0.630 0.000
## i6 0.000 0.711 0.000
## i7 0.000 0.000 0.822
## i8 0.000 0.000 0.784
## i9 0.000 0.000 0.781

>.6

Evaluamos el modelo

summary(janeth.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                22.128
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.572
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2743.064
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.001
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9597.764
##   Loglikelihood unrestricted model (H1)      -9586.701
##                                                       
##   Akaike (AIC)                               19237.529
##   Bayesian (BIC)                             19340.592
##   Sample-size adjusted Bayesian (BIC)        19273.894
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.023
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EE =~                                               
##     i1                1.000                           
##     i2                1.042    0.070   14.956    0.000
##     i3                1.100    0.075   14.672    0.000
##   CRP =~                                              
##     i4                1.000                           
##     i5                0.953    0.066   14.544    0.000
##     i6                1.113    0.073   15.156    0.000
##   PC =~                                               
##     i7                1.000                           
##     i8                0.961    0.038   25.165    0.000
##     i9                1.048    0.042   25.086    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   PC ~                                                
##     EE                0.815    0.062   13.223    0.000
##     CRP               0.677    0.056   12.145    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EE ~~                                               
##     CRP               0.008    0.012    0.659    0.510
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.334    0.021   16.221    0.000
##    .i2                0.320    0.021   15.395    0.000
##    .i3                0.419    0.025   16.439    0.000
##    .i4                0.334    0.021   15.687    0.000
##    .i5                0.367    0.022   16.910    0.000
##    .i6                0.324    0.023   13.877    0.000
##    .i7                0.231    0.016   14.157    0.000
##    .i8                0.278    0.017   16.071    0.000
##    .i9                0.337    0.021   16.186    0.000
##     EE                0.251    0.026    9.753    0.000
##     CRP               0.267    0.027    9.883    0.000
##    .PC                0.182    0.020    9.226    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

janeth_mean <- 
  janethSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

janeth_sd <- 
  janethSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

janeth_sd_mean <- 
  janeth_mean |> 
  bind_rows(janeth_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

janeth_cronbach_RE <-
  janethSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

janeth_cronbach_DE <-
  janethSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

janeth_cronbach_CD <-
  janethSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

janeth_cronbach <- 
  tibble(RE = janeth_cronbach_RE$alpha,
         DE = janeth_cronbach_DE$alpha,
         CD = janeth_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(janeth_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
         Cronbach, 
         promedio, 
         des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
                )
## Joining, by = "Variable_compuesta"
rm(janeth_mean,
   janeth_sd, 
   janeth_sd_mean)

janeth_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.70 2.95 0.77
DE 3 0.71 2.87 0.78
CD 3 0.84 2.88 0.84

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- janethSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- janethSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- janethSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

janeth_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(janeth_latent))
##      RE   DE   CD
## RE 1.00 0.02 0.34
## DE 0.02 1.00 0.24
## CD 0.34 0.24 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.6324 0.0000
## DE 0.6324        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(janeth.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)