Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict IE with FA and ES (formula: IE ~ FA + ES). The model explains a statistically significant and substantial proportion of variance (R2 = 0.35, F(2, 997) = 266.22, p < .001, adj. R2 = 0.35). The model's intercept, corresponding to FA = 0 and ES = 0, is at 0.50 (95% CI [0.27, 0.73], t(997) = 4.33, p < .001). Within this model:
## 
##   - The effect of FA is statistically significant and positive (beta = 0.46, 95% CI [0.41, 0.52], t(997) = 16.88, p < .001; Std. beta = 0.43, 95% CI [0.38, 0.48])
##   - The effect of ES is statistically significant and positive (beta = 0.43, 95% CI [0.37, 0.48], t(997) = 15.64, p < .001; Std. beta = 0.40, 95% CI [0.35, 0.45])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict IE with FA and ES (formula: IE ~ FA + ES). The model's explanatory power is moderate (Tjur's R2 = 0.23). The model's intercept, corresponding to FA = 0 and ES = 0, is at 7.64 (95% CI [6.41, 8.93], p < .001). Within this model:
## 
##   - The effect of FA is statistically significant and negative (beta = -1.49, 95% CI [-1.78, -1.22], p < .001; Std. beta = -0.95, 95% CI [-1.13, -0.78])
##   - The effect of ES is statistically significant and negative (beta = -1.44, 95% CI [-1.72, -1.17], p < .001; Std. beta = -0.92, 95% CI [-1.11, -0.75])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datos

IE = Inteligencia Emocional

FA = Familia

ES = Escuela

La Inteligencia Emocional es influenciada por la Familia y por la Escuela

IE ~ FA + ES

Análisis Exploratorio

factanal(isabelSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = isabelSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.606 0.542 0.648 0.510 0.652 0.515 0.340 0.426 0.417 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1                  0.625 
## i2                  0.681 
## i3                  0.578 
## i4          0.650         
## i5          0.589         
## i6          0.731         
## i7  0.782                 
## i8  0.725                 
## i9  0.750                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.711   1.306   1.198
## Proportion Var   0.190   0.145   0.133
## Cumulative Var   0.190   0.335   0.468
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000  0.5246  0.5274
## Factor2   0.525  1.0000 -0.0663
## Factor3   0.527 -0.0663  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 16.13 on 12 degrees of freedom.
## The p-value is 0.185
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

isabelModel <- 
  "FA =~ i1 + i2 + i3
   ES =~ i4 + i5 + i6
   IE =~ i7 + i8 + i9
   IE ~ FA
   IE ~ ES"

isabel.fit <- 
  cfa(isabelModel, 
      data = isabelSimData)

Revisamos las cargas

inspect(isabel.fit, 
        what = "std")$lambda
##       FA    ES    IE
## i1 0.625 0.000 0.000
## i2 0.676 0.000 0.000
## i3 0.597 0.000 0.000
## i4 0.000 0.719 0.000
## i5 0.000 0.587 0.000
## i6 0.000 0.673 0.000
## i7 0.000 0.000 0.813
## i8 0.000 0.000 0.758
## i9 0.000 0.000 0.762

>.6

Evaluamos el modelo

summary(isabel.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                20.741
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.654
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2483.301
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.002
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9733.640
##   Loglikelihood unrestricted model (H1)      -9723.269
##                                                       
##   Akaike (AIC)                               19509.280
##   Bayesian (BIC)                             19612.343
##   Sample-size adjusted Bayesian (BIC)        19545.646
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.021
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   FA =~                                               
##     i1                1.000                           
##     i2                1.233    0.091   13.622    0.000
##     i3                1.086    0.083   13.008    0.000
##   ES =~                                               
##     i4                1.000                           
##     i5                0.771    0.054   14.221    0.000
##     i6                0.890    0.058   15.266    0.000
##   IE =~                                               
##     i7                1.000                           
##     i8                0.919    0.039   23.345    0.000
##     i9                0.821    0.035   23.445    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   IE ~                                                
##     FA                0.847    0.070   12.121    0.000
##     ES                0.703    0.054   13.059    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   FA ~~                                               
##     ES               -0.015    0.013   -1.146    0.252
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.367    0.022   16.351    0.000
##    .i2                0.426    0.029   14.485    0.000
##    .i3                0.501    0.029   17.209    0.000
##    .i4                0.315    0.023   13.516    0.000
##    .i5                0.382    0.021   18.101    0.000
##    .i6                0.324    0.021   15.468    0.000
##    .i7                0.257    0.019   13.829    0.000
##    .i8                0.314    0.019   16.453    0.000
##    .i9                0.245    0.015   16.306    0.000
##     FA                0.235    0.026    8.951    0.000
##     ES                0.338    0.032   10.692    0.000
##    .IE                0.184    0.022    8.320    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

isabel_mean <- 
  isabelSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

isabel_sd <- 
  isabelSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

isabel_sd_mean <- 
  isabel_mean |> 
  bind_rows(isabel_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

isabel_cronbach_RE <-
  isabelSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

isabel_cronbach_DE <-
  isabelSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

isabel_cronbach_CD <-
  isabelSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

isabel_cronbach <- 
  tibble(RE = isabel_cronbach_RE$alpha,
         DE = isabel_cronbach_DE$alpha,
         CD = isabel_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(isabel_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
                Cronbach, 
                promedio, 
                des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
  )
## Joining, by = "Variable_compuesta"
rm(isabel_mean,
   isabel_sd, 
   isabel_sd_mean)

isabel_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.66 3.51 0.78
DE 3 0.70 2.82 0.81
CD 3 0.82 3.07 0.87

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- isabelSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- isabelSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- isabelSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

isabel_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(isabel_latent))
##       RE    DE   CD
## RE  1.00 -0.05 0.28
## DE -0.05  1.00 0.34
## CD  0.28  0.34 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.1157 0.0000
## DE 0.1157        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(isabel.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)