Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict PL with REL and ES (formula: PL ~ REL + ES). The model explains a statistically significant and substantial proportion of variance (R2 = 0.28, F(2, 997) = 192.38, p < .001, adj. R2 = 0.28). The model's intercept, corresponding to REL = 0 and ES = 0, is at 0.62 (95% CI [0.37, 0.86], t(997) = 4.94, p < .001). Within this model:
## 
##   - The effect of REL is statistically significant and positive (beta = 0.50, 95% CI [0.44, 0.56], t(997) = 16.12, p < .001; Std. beta = 0.43, 95% CI [0.38, 0.49])
##   - The effect of ES is statistically significant and positive (beta = 0.31, 95% CI [0.25, 0.37], t(997) = 10.53, p < .001; Std. beta = 0.28, 95% CI [0.23, 0.34])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict PL with REL and ES (formula: PL ~ REL + ES). The model's explanatory power is moderate (Tjur's R2 = 0.24). The model's intercept, corresponding to REL = 0 and ES = 0, is at 7.99 (95% CI [6.82, 9.23], p < .001). Within this model:
## 
##   - The effect of REL is statistically significant and negative (beta = -1.44, 95% CI [-1.70, -1.19], p < .001; Std. beta = -0.94, 95% CI [-1.11, -0.77])
##   - The effect of ES is statistically significant and negative (beta = -1.27, 95% CI [-1.52, -1.02], p < .001; Std. beta = -0.82, 95% CI [-0.98, -0.66])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datos

PC = Pensamiento Crítico

EE = Estrategias de Enseñanza

CRP = Capacidad de Resolución de Problemas

El Pensamiento Crítico es influenciada por la Estrategias de Enseñanza y por la Capacidad de Resolución de Problemas

PC ~ EE + CRP

Análisis Exploratorio

factanal(hildaSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = hildaSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.673 0.511 0.678 0.715 0.575 0.539 0.457 0.362 0.452 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1                  0.528 
## i2                  0.701 
## i3                  0.585 
## i4          0.518         
## i5          0.677         
## i6          0.660         
## i7  0.711                 
## i8  0.776                 
## i9  0.740                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.671   1.166   1.118
## Proportion Var   0.186   0.130   0.124
## Cumulative Var   0.186   0.315   0.439
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000 -0.4160  0.5830
## Factor2  -0.416  1.0000 -0.0573
## Factor3   0.583 -0.0573  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 11.43 on 12 degrees of freedom.
## The p-value is 0.492
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

hildaModel <- 
  "EE =~ i1 + i2 + i3
   CRP =~ i4 + i5 + i6
   PC =~ i7 + i8 + i9
   PC ~ EE
   PC ~ CRP"

hilda.fit <- 
  cfa(hildaModel, 
      data = hildaSimData)

Revisamos las cargas

inspect(hilda.fit, 
        what = "std")$lambda
##       EE   CRP    PC
## i1 0.591 0.000 0.000
## i2 0.689 0.000 0.000
## i3 0.555 0.000 0.000
## i4 0.000 0.537 0.000
## i5 0.000 0.619 0.000
## i6 0.000 0.702 0.000
## i7 0.000 0.000 0.739
## i8 0.000 0.000 0.801
## i9 0.000 0.000 0.735

>.6

Evaluamos el modelo

summary(hilda.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                18.005
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.803
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2088.054
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.004
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9719.132
##   Loglikelihood unrestricted model (H1)      -9710.129
##                                                       
##   Akaike (AIC)                               19480.264
##   Bayesian (BIC)                             19583.327
##   Sample-size adjusted Bayesian (BIC)        19516.630
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.017
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EE =~                                               
##     i1                1.000                           
##     i2                1.243    0.097   12.763    0.000
##     i3                0.820    0.069   11.872    0.000
##   CRP =~                                              
##     i4                1.000                           
##     i5                1.177    0.102   11.506    0.000
##     i6                1.264    0.110   11.450    0.000
##   PC =~                                               
##     i7                1.000                           
##     i8                1.210    0.057   21.360    0.000
##     i9                1.085    0.053   20.399    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   PC ~                                                
##     EE                0.709    0.063   11.186    0.000
##     CRP               0.485    0.059    8.253    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EE ~~                                               
##     CRP               0.011    0.010    1.109    0.267
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.410    0.024   16.958    0.000
##    .i2                0.377    0.028   13.326    0.000
##    .i3                0.332    0.019   17.929    0.000
##    .i4                0.478    0.027   17.897    0.000
##    .i5                0.431    0.028   15.152    0.000
##    .i6                0.319    0.027   11.597    0.000
##    .i7                0.260    0.016   16.229    0.000
##    .i8                0.255    0.019   13.285    0.000
##    .i9                0.312    0.019   16.367    0.000
##     EE                0.220    0.027    8.273    0.000
##     CRP               0.194    0.027    7.315    0.000
##    .PC                0.148    0.016    9.013    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

hilda_mean <- 
  hildaSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

hilda_sd <- 
  hildaSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

hilda_sd_mean <- 
  hilda_mean |> 
  bind_rows(hilda_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

hilda_cronbach_RE <-
  hildaSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

hilda_cronbach_DE <-
  hildaSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

hilda_cronbach_CD <-
  hildaSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

hilda_cronbach <- 
  tibble(RE = hilda_cronbach_RE$alpha,
         DE = hilda_cronbach_DE$alpha,
         CD = hilda_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(hilda_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
                Cronbach, 
                promedio, 
                des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
  )
## Joining, by = "Variable_compuesta"
rm(hilda_mean,
   hilda_sd, 
   hilda_sd_mean)

hilda_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.64 2.81 0.79
DE 3 0.65 3.10 0.82
CD 3 0.80 3.08 0.76

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- hildaSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- hildaSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- hildaSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

hilda_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(hilda_latent))
##      RE   DE   CD
## RE 1.00 0.06 0.27
## DE 0.06 1.00 0.20
## CD 0.27 0.20 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.0753 0.0000
## DE 0.0753        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(hilda.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)