## Rows: 92378 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): air_store_id, visit_datetime, reserve_datetime
## dbl (1): reserve_visitors
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 92,378
## Columns: 4
## $ air_store_id     <chr> "air_877f79706adbfb06", "air_db4b38ebe7a7ceff", "air_…
## $ visit_datetime   <chr> "1/1/16 19:00", "1/1/16 19:00", "1/1/16 19:00", "1/1/…
## $ reserve_datetime <chr> "1/1/16 16:00", "1/1/16 19:00", "1/1/16 19:00", "1/1/…
## $ reserve_visitors <dbl> 1, 3, 6, 2, 5, 2, 4, 2, 2, 2, 3, 3, 2, 6, 7, 41, 13, …
## Rows: 252108 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): air_store_id
## dbl  (1): visitors
## date (1): visit_date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 252,108
## Columns: 3
## $ air_store_id <chr> "air_ba937bf13d40fb24", "air_ba937bf13d40fb24", "air_ba93…
## $ visit_date   <date> 2016-01-13, 2016-01-14, 2016-01-15, 2016-01-16, 2016-01-…
## $ visitors     <dbl> 25, 32, 29, 22, 6, 9, 31, 21, 18, 26, 21, 11, 24, 21, 26,…
## Rows: 829 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): air_store_id, air_genre_name, air_area_name
## dbl (2): latitude, longitude
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 829
## Columns: 5
## $ air_store_id   <chr> "air_0f0cdeee6c9bf3d7", "air_7cc17a324ae5c7dc", "air_fe…
## $ air_genre_name <chr> "Italian/French", "Italian/French", "Italian/French", "…
## $ air_area_name  <chr> "Hyōgo-ken Kōbe-shi Kumoidōri", "Hyōgo-ken Kōbe-shi Kum…
## $ latitude       <dbl> 34.69512, 34.69512, 34.69512, 34.69512, 35.65807, 35.65…
## $ longitude      <dbl> 135.1979, 135.1979, 135.1979, 135.1979, 139.7516, 139.7…
## Rows: 2000320 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): hpg_store_id
## dbl  (1): reserve_visitors
## dttm (2): visit_datetime, reserve_datetime
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 2,000,320
## Columns: 4
## $ hpg_store_id     <chr> "hpg_c63f6f42e088e50f", "hpg_dac72789163a3f47", "hpg_…
## $ visit_datetime   <dttm> 2016-01-01 11:00:00, 2016-01-01 13:00:00, 2016-01-01…
## $ reserve_datetime <dttm> 2016-01-01 09:00:00, 2016-01-01 06:00:00, 2016-01-01…
## $ reserve_visitors <dbl> 1, 3, 2, 5, 13, 2, 2, 2, 2, 6, 2, 2, 2, 2, 5, 4, 2, 4…
## Rows: 2000320 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): hpg_store_id
## dbl  (1): reserve_visitors
## dttm (2): visit_datetime, reserve_datetime
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 6 × 5
##   hpg_store_id         visit_datetime      reserve_datetime    reserve_visitors
##   <chr>                <dttm>              <dttm>                         <dbl>
## 1 hpg_c63f6f42e088e50f 2016-01-01 11:00:00 2016-01-01 09:00:00                1
## 2 hpg_dac72789163a3f47 2016-01-01 13:00:00 2016-01-01 06:00:00                3
## 3 hpg_c8e24dcf51ca1eb5 2016-01-01 16:00:00 2016-01-01 14:00:00                2
## 4 hpg_24bb207e5fd49d4a 2016-01-01 17:00:00 2016-01-01 11:00:00                5
## 5 hpg_25291c542ebb3bc2 2016-01-01 17:00:00 2016-01-01 03:00:00               13
## 6 hpg_28bdf7a336ec6a7b 2016-01-01 17:00:00 2016-01-01 15:00:00                2
## # … with 1 more variable: visit_date <date>
## # A tibble: 2,000,320 × 3
##    hpg_store_id         reserve_visitors visit_date
##    <chr>                           <dbl> <date>    
##  1 hpg_c63f6f42e088e50f                1 2016-01-01
##  2 hpg_dac72789163a3f47                3 2016-01-01
##  3 hpg_c8e24dcf51ca1eb5                2 2016-01-01
##  4 hpg_24bb207e5fd49d4a                5 2016-01-01
##  5 hpg_25291c542ebb3bc2               13 2016-01-01
##  6 hpg_28bdf7a336ec6a7b                2 2016-01-01
##  7 hpg_2a01a042bca04ad9                2 2016-01-01
##  8 hpg_2a84dd9f4c140b82                2 2016-01-01
##  9 hpg_2ad179871696901f                2 2016-01-01
## 10 hpg_2c1d989eedb0ff83                6 2016-01-01
## # … with 2,000,310 more rows
## # A tibble: 6 × 2
##   visit_date all_visitors
##   <date>            <dbl>
## 1 2016-01-01          493
## 2 2016-01-02         3089
## 3 2016-01-03         3223
## 4 2016-01-04         2834
## 5 2016-01-05         2796
## 6 2016-01-06         3590
## Rows: 4690 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): hpg_store_id, hpg_genre_name, hpg_area_name
## dbl (2): latitude, longitude
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 4,690
## Columns: 5
## $ hpg_store_id   <chr> "hpg_6622b62385aec8bf", "hpg_e9e068dd49c5fa00", "hpg_29…
## $ hpg_genre_name <chr> "Japanese style", "Japanese style", "Japanese style", "…
## $ hpg_area_name  <chr> "Tōkyō-to Setagaya-ku Taishidō", "Tōkyō-to Setagaya-ku …
## $ latitude       <dbl> 35.64367, 35.64367, 35.64367, 35.64367, 35.64367, 35.64…
## $ longitude      <dbl> 139.6682, 139.6682, 139.6682, 139.6682, 139.6682, 139.6…
## Rows: 517 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): day_of_week
## dbl  (1): holiday_flg
## date (1): calendar_date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 517
## Columns: 3
## $ calendar_date <date> 2016-01-01, 2016-01-02, 2016-01-03, 2016-01-04, 2016-01…
## $ day_of_week   <chr> "Friday", "Saturday", "Sunday", "Monday", "Tuesday", "We…
## $ holiday_flg   <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## # A tibble: 2 × 2
##   holiday_flg     n
##         <dbl> <int>
## 1           0   447
## 2           1    31
## [1] 0.06485356
## Rows: 150 Columns: 2
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): air_store_id, hpg_store_id
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 150
## Columns: 2
## $ air_store_id <chr> "air_63b13c56b7201bd9", "air_a24bf50c3e90d583", "air_c7f7…
## $ hpg_store_id <chr> "hpg_4bc649e72e2a239a", "hpg_c34b496d0305a809", "hpg_cd8a…
## [1] 829
## [1] 13325

## # A tibble: 6 × 7
##   air_store_id         visit_date visitors air_genre_name air_area_name latitude
##   <chr>                <date>        <dbl> <chr>          <chr>            <dbl>
## 1 air_ba937bf13d40fb24 2016-01-13       25 Dining bar     Tōkyō-to Min…     35.7
## 2 air_ba937bf13d40fb24 2016-01-14       32 Dining bar     Tōkyō-to Min…     35.7
## 3 air_ba937bf13d40fb24 2016-01-15       29 Dining bar     Tōkyō-to Min…     35.7
## 4 air_ba937bf13d40fb24 2016-01-16       22 Dining bar     Tōkyō-to Min…     35.7
## 5 air_ba937bf13d40fb24 2016-01-18        6 Dining bar     Tōkyō-to Min…     35.7
## 6 air_ba937bf13d40fb24 2016-01-19        9 Dining bar     Tōkyō-to Min…     35.7
## # … with 1 more variable: longitude <dbl>
## `summarise()` has grouped output by 'visit_date'. You can override using the
## `.groups` argument.

## 
## Call:
## tslm(formula = visitors ~ month + wday, data = airNewts)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -22.34 -11.99  -3.97   8.01 856.18 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.476729   0.096070 181.917   <2e-16 ***
## month       -0.002310   0.009024  -0.256    0.798    
## wday         0.838647   0.016874  49.700   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.68 on 252105 degrees of freedom
## Multiple R-squared:  0.009703,   Adjusted R-squared:  0.009695 
## F-statistic:  1235 on 2 and 252105 DF,  p-value: < 2.2e-16
## 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2016-01-06 2016-01-07 
##         25         32         29         22          6          9         31 
## 2016-01-08 2016-01-09 2016-01-10 2016-01-11 2016-01-12 2016-01-13 2016-01-14 
##         21         18         26         21         11         24         21 
## 2016-01-15 2016-01-16 2016-01-17 2016-01-18 2016-01-19 2016-01-20 2016-01-21 
##         26          6         18         12         45         15         19 
## 2016-01-22 2016-01-23 2016-01-24 2016-01-25 2016-01-26 2016-01-27 2016-01-28 
##         15         32          3         26          8         14         15 
## 2016-01-29 2016-01-30 2016-01-31 2016-02-01 2016-02-02 2016-02-03 2016-02-04 
##         17         22         43         20          7         16         21 
## 2016-02-05 2016-02-06 2016-02-07 2016-02-08 2016-02-09 2016-02-10 2016-02-11 
##         21         32         23         22         19         21         20 
## 2016-02-12 2016-02-13 2016-02-14 2016-02-15 2016-02-16 2016-02-17 2016-02-18 
##         37         13         11          8         23         31         37 
## 2016-02-19 2016-02-20 2016-02-21 2016-02-22 2016-02-23 2016-02-24 2016-02-25 
##         25         10         20         25         27         39         32 
## 2016-02-26 2016-02-27 2016-02-28 2016-02-29 2016-03-01 2016-03-02 2016-03-03 
##         17         29         25         30         41          1          7 
## 2016-03-04 2016-03-05 2016-03-06 2016-03-07 2016-03-08 2016-03-09 2016-03-10 
##         19         25         44         36         16         20         22 
## 2016-03-11 2016-03-12 2016-03-13 2016-03-14 2016-03-15 2016-03-16 2016-03-17 
##         13         12         49         19         10         22         30 
## 2016-03-18 2016-03-19 2016-03-20 2016-03-21 2016-03-22 2016-03-23 2016-03-24 
##         24         51         35         21         23         33         11 
## 2016-03-25 2016-03-26 2016-03-27 2016-03-28 2016-03-29 2016-03-30 2016-03-31 
##         40         28         29         19          9         26         12 
## 2016-04-01 2016-04-02 2016-04-03 2016-04-04 2016-04-05 2016-04-06 2016-04-07 
##         34         17         46         12         14         24         30 
## 2016-04-08 2016-04-09 2016-04-10 2016-04-11 2016-04-12 2016-04-13 2016-04-14 
##         45         48         11         20         37         23         54 
## 2016-04-15 2016-04-16 2016-04-17 2016-04-18 2016-04-19 2016-04-20 2016-04-21 
##         43         11         28         33         26         30         27 
## 2016-04-22 2016-04-23 2016-04-24 2016-04-25 2016-04-26 2016-04-27 2016-04-28 
##         17         25         27         27         50         33         10 
## 2016-04-29 2016-04-30 2016-05-01 2016-05-02 2016-05-03 2016-05-04 2016-05-05 
##         20         35         27         43         53         16         25 
## 2016-05-06 2016-05-07 2016-05-08 2016-05-09 2016-05-10 2016-05-11 2016-05-12 
##         32         24         46         34         11         22         14 
## 2016-05-13 2016-05-14 2016-05-15 2016-05-16 2016-05-17 2016-05-18 2016-05-19 
##         45         39         44         32         26         33         33 
## 2016-05-20 2016-05-21 2016-05-22 2016-05-23 2016-05-24 2016-05-25 2016-05-26 
##         61         25         21         24         19         22         29 
## 2016-05-27 2016-05-28 2016-05-29 2016-05-30 2016-05-31 2016-06-01 2016-06-02 
##         33         20         28         25         22         51         28 
## 2016-06-03 2016-06-04 2016-06-05 2016-06-06 2016-06-07 2016-06-08 2016-06-09 
##         16         45         26         47         24          9         23 
## 2016-06-10 2016-06-11 2016-06-12 2016-06-13 2016-06-14 2016-06-15 2016-06-16 
##         26         26         33         21         13         12         27 
## 2016-06-17 2016-06-18 2016-06-19 2016-06-20 2016-06-21 2016-06-22 2016-06-23 
##         24         38         27         23         22         57          2 
## 2016-06-24 2016-06-25 2016-06-26 2016-06-27 2016-06-28 2016-06-29 2016-06-30 
##         18         21         35         18         15         34         27 
## 2016-07-01 2016-07-02 2016-07-03 2016-07-04 2016-07-05 2016-07-06 2016-07-07 
##         31         31         28         10         21         36         20 
## 2016-07-08 2016-07-09 2016-07-10 2016-07-11 2016-07-12 2016-07-13 2016-07-14 
##         30         39          4         32         20         15         29 
## 2016-07-15 2016-07-16 2016-07-17 2016-07-18 2016-07-19 2016-07-20 2016-07-21 
##         40         23         18         40         14         46         46 
## 2016-07-22 2016-07-23 2016-07-24 2016-07-25 2016-07-26 2016-07-27 2016-07-28 
##         13         37         21         27         32         24         28 
## 2016-07-29 2016-07-30 2016-07-31 2016-08-01 2016-08-02 2016-08-03 2016-08-04 
##         25         14         29         48          6         15         20 
## 2016-08-05 2016-08-06 2016-08-07 2016-08-08 2016-08-09 2016-08-10 2016-08-11 
##         13         11         36         26         19         26         27 
## 2016-08-12 2016-08-13 2016-08-14 2016-08-15 2016-08-16 2016-08-17 2016-08-18 
##         22         14         20         18         29         26         37 
## 2016-08-19 2016-08-20 2016-08-21 2016-08-22 2016-08-23 2016-08-24 2016-08-25 
##         41         18         16         15         21         25         34 
## 2016-08-26 2016-08-27 2016-08-28 2016-08-29 2016-08-30 2016-08-31 2016-09-01 
##         24         18         16         12         18         20          3 
## 2016-09-02 2016-09-03 2016-09-04 2016-09-05 2016-09-06 2016-09-07 2016-09-08 
##          7         24         27          7         33         34          2 
## 2016-09-09 2016-09-10 2016-09-11 2016-09-12 2016-09-13 2016-09-14 2016-09-15 
##         24          8         14         46         38         10         35 
## 2016-09-16 2016-09-17 2016-09-18 2016-09-19 2016-09-20 2016-09-21 2016-09-22 
##          8          8         26         32         12         19         15 
## 2016-09-23 2016-09-24 2016-09-25 2016-09-26 2016-09-27 2016-09-28 2016-09-29 
##         22         28         36          8         16          5         26 
## 2016-09-30 2016-10-01 2016-10-02 2016-10-03 2016-10-04 2016-10-05 2016-10-06 
##         19         40         11         12         31         22         11 
## 2016-10-07 2016-10-08 2016-10-09 2016-10-10 2016-10-11 2016-10-12 2016-10-13 
##         46         31          7         23         27         32          4 
## 2016-10-14 2016-10-15 2016-10-16 2016-10-17 2016-10-18 2016-10-19 2016-10-20 
##         11         15         16         26         54         11         21 
## 2016-10-21 2016-10-22 2016-10-23 2016-10-24 2016-10-25 2016-10-26 2016-10-27 
##         16         16         12         10         25         28          5 
## 2016-10-28 2016-10-29 2016-10-30 2016-10-31 2016-11-01 2016-11-02 2016-11-03 
##         21         24         17         24         38          2         11 
## 2016-11-04 2016-11-05 2016-11-06 2016-11-07 2016-11-08 2016-11-09 2016-11-10 
##          8         25         15         37         23          1          4 
## 2016-11-11 2016-11-12 2016-11-13 2016-11-14 2016-11-15 2016-11-16 2016-11-17 
##         12         10         19         54         30          3         11 
## 2016-11-18 2016-11-19 2016-11-20 2016-11-21 2016-11-22 2016-11-23 2016-11-24 
##          8         22         23         25         23         20         17 
## 2016-11-25 2016-11-26 2016-11-27 2016-11-28 2016-11-29 2016-11-30 2016-12-01 
##         15         16         39         22          3          7         14 
## 2016-12-02 2016-12-03 2016-12-04 2016-12-05 2016-12-06 2016-12-07 2016-12-08 
##         25         11         40         27          8         11         18 
## 2016-12-09 2016-12-10 2016-12-11 2016-12-12 2016-12-13 2016-12-14 2016-12-15 
##          8         19         42         17          5         17         10 
## 2016-12-16 2016-12-17 2016-12-18 2016-12-19 2016-12-20 2016-12-21 2016-12-22 
##         41         26         11          7          7         21         12 
## 2016-12-23 2016-12-24 2016-12-25 2016-12-26 2016-12-27 2016-12-28 2016-12-29 
##         35          7          1          9         27         16         27 
## 2016-12-30 2016-12-31 2017-01-01 2017-01-02 2017-01-03 2017-01-04 2017-01-05 
##         20          6         18         20         20         31         32 
## 2017-01-06 2017-01-07 2017-01-08 2017-01-09 2017-01-10 2017-01-11 2017-01-12 
##          4          4         32         19         12         46         25 
## 2017-01-13 2017-01-14 2017-01-15 2017-01-16 2017-01-17 2017-01-18 2017-01-19 
##          3          9          7         17         27         16          1 
## 2017-01-20 2017-01-21 2017-01-22 2017-01-23 2017-01-24 2017-01-25 2017-01-26 
##         10         11         11         14         40         23         12 
## 2017-01-27 2017-01-28 2017-01-29 2017-01-30 2017-01-31 2017-02-01 2017-02-02 
##         28          6          8         13         14          2         21 
## 2017-02-03 2017-02-04 2017-02-05 2017-02-06 2017-02-07 2017-02-08 2017-02-09 
##          8         21         17          1         15         11         25 
## 2017-02-10 2017-02-11 2017-02-12 2017-02-13 2017-02-14 2017-02-15 2017-02-16 
##         45         16          4          3         10         11         50 
## 2017-02-17 2017-02-18 2017-02-19 2017-02-20 2017-02-21 2017-02-22 2017-02-23 
##         12          6         10          3         13          5          2 
## 2017-02-24 2017-02-25 2017-02-26 2017-02-27 2017-02-28 2017-03-01 2017-03-02 
##          6         21          6         15          3         19          8 
## 2017-03-03 2017-03-04 2017-03-05 2017-03-06 2017-03-07 2017-03-08 2017-03-09 
##          8         22         27         22          3         18          8 
## 2017-03-10 2017-03-11 2017-03-12 2017-03-13 2017-03-14 2017-03-15 2017-03-16 
##         10         33         16         21          1         32         27 
## 2017-03-17 2017-03-18 2017-03-19 2017-03-20 2017-03-21 2017-03-22 2017-03-23 
##          2         22         14          9          9         19          3 
## 2017-03-24 2017-03-25 2017-03-26 2017-03-27 2017-03-28 2017-03-29 2017-03-30 
##          1          8         20          9         22          2         14 
## 2017-03-31 2017-04-01 2017-04-02 2017-04-03 2017-04-04 2017-04-05 2017-04-06 
##          1          1          5          1         13          3         29 
## 2017-04-07 2017-04-08 2017-04-09 2017-04-10 2017-04-11 2017-04-12 2017-04-13 
##          6          5         16         17         17          5         16 
## 2017-04-14 2017-04-15 2017-04-16 2017-04-17 2017-04-18 2017-04-19 2017-04-20 
##          3          9         26          1          6         12          5 
## 2017-04-21 2017-04-22 
##          6          6

## ETS(A,A,N) 
## 
## Call:
##  ets(y = airts) 
## 
##   Smoothing parameters:
##     alpha = 0.0018 
##     beta  = 0.0018 
## 
##   Initial states:
##     l = 15.308 
##     b = -0.0041 
## 
##   sigma:  11.0998
## 
##      AIC     AICc      BIC 
## 5256.083 5256.210 5276.931

##                      ME    RMSE      MAE       MPE     MAPE      MASE
## Training set -0.1320267 11.0533 8.865076 -78.62835 104.4266 0.7297051
##                    ACF1
## Training set 0.01790717

## ndiffs 
##      1

## Series: airts 
## ARIMA(4,1,3) 
## 
## Coefficients:
##          ar1      ar2      ar3      ar4      ma1     ma2      ma3
##       0.4961  -0.8305  -0.0191  -0.3137  -1.5191  1.2559  -0.6577
## s.e.  0.1082   0.0752   0.0504   0.0560   0.1107  0.1645   0.0721
## 
## sigma^2 estimated as 108:  log likelihood=-1791.68
## AIC=3599.36   AICc=3599.67   BIC=3632.7

##                      ME     RMSE      MAE       MPE     MAPE     MASE
## Training set -0.5176378 10.30316 8.303773 -76.88912 100.4152 0.683503
##                     ACF1
## Training set 0.001849778
## 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2016-01-06 2016-01-07 
##        493       3089       3223       2834       2796       3590       4223 
## 2016-01-08 2016-01-09 2016-01-10 2016-01-11 2016-01-12 2016-01-13 2016-01-14 
##      11645      12628      10497       6024       5298       7050       7774 
## 2016-01-15 2016-01-16 2016-01-17 2016-01-18 2016-01-19 2016-01-20 2016-01-21 
##      20924      18457       7579       5788       6825       9495       8533 
## 2016-01-22 2016-01-23 2016-01-24 2016-01-25 2016-01-26 2016-01-27 2016-01-28 
##      24748      23005       8358       6795       8228      10830       9999 
## 2016-01-29 2016-01-30 2016-01-31 2016-02-01 2016-02-02 2016-02-03 2016-02-04 
##      28134      25193       9125       5298       5563       6442       7282 
## 2016-02-05 2016-02-06 2016-02-07 2016-02-08 2016-02-09 2016-02-10 2016-02-11 
##      19515      20473       8031       6167       7357      21229       8440 
## 2016-02-12 2016-02-13 2016-02-14 2016-02-15 2016-02-16 2016-02-17 2016-02-18 
##      18072      20528       7781       6623       7722       9806       8982 
## 2016-02-19 2016-02-20 2016-02-21 2016-02-22 2016-02-23 2016-02-24 2016-02-25 
##      22992      22629       9600       7021       8127      10545      10482 
## 2016-02-26 2016-02-27 2016-02-28 2016-02-29 2016-03-01 2016-03-02 2016-03-03 
##      27395      26749      10302       8444       6561       7952       7819 
## 2016-03-04 2016-03-05 2016-03-06 2016-03-07 2016-03-08 2016-03-09 2016-03-10 
##      20894      21775       9353       6964       8907      10468      10107 
## 2016-03-11 2016-03-12 2016-03-13 2016-03-14 2016-03-15 2016-03-16 2016-03-17 
##      28411      26517      11263       8785      12034      14345      13625 
## 2016-03-18 2016-03-19 2016-03-20 2016-03-21 2016-03-22 2016-03-23 2016-03-24 
##      36640      31029      21030      11183      13095      19208      19251 
## 2016-03-25 2016-03-26 2016-03-27 2016-03-28 2016-03-29 2016-03-30 2016-03-31 
##      50588      31711      14900      15645      17632      22811      15930 
## 2016-04-01 2016-04-02 2016-04-03 2016-04-04 2016-04-05 2016-04-06 2016-04-07 
##      23707      18905       8985       7420       8969      10323      10218 
## 2016-04-08 2016-04-09 2016-04-10 2016-04-11 2016-04-12 2016-04-13 2016-04-14 
##      28277      20803       8256       7225       8631      11827      11636 
## 2016-04-15 2016-04-16 2016-04-17 2016-04-18 2016-04-19 2016-04-20 2016-04-21 
##      35787      24822       9300       8519       9939      13676      12097 
## 2016-04-22 2016-04-23 2016-04-24 2016-04-25 2016-04-26 2016-04-27 2016-04-28 
##      37515      25419       9754      10664      12711      16783      31656 
## 2016-04-29 2016-04-30 2016-05-01 2016-05-02 2016-05-03 2016-05-04 2016-05-05 
##      18831      21336      10573      14177      17405      15823       9068 
## 2016-05-06 2016-05-07 2016-05-08 2016-05-09 2016-05-10 2016-05-11 2016-05-12 
##      13364      16440       8600       6387       7022       8808       9363 
## 2016-05-13 2016-05-14 2016-05-15 2016-05-16 2016-05-17 2016-05-18 2016-05-19 
##      27085      22807       9145       6923       7936      11247      11120 
## 2016-05-20 2016-05-21 2016-05-22 2016-05-23 2016-05-24 2016-05-25 2016-05-26 
##      27869      23472       9734       6808       8032      12402      12056 
## 2016-05-27 2016-05-28 2016-05-29 2016-05-30 2016-05-31 2016-06-01 2016-06-02 
##      30791      26541      10968       8479       8948       8119       7849 
## 2016-06-03 2016-06-04 2016-06-05 2016-06-06 2016-06-07 2016-06-08 2016-06-09 
##      22829      21432       9441       6436       7399      10347       9505 
## 2016-06-10 2016-06-11 2016-06-12 2016-06-13 2016-06-14 2016-06-15 2016-06-16 
##      27284      25195      10386       6662       7729      11100      11274 
## 2016-06-17 2016-06-18 2016-06-19 2016-06-20 2016-06-21 2016-06-22 2016-06-23 
##      29537      27685      13031       7725       9356      12243      12818 
## 2016-06-24 2016-06-25 2016-06-26 2016-06-27 2016-06-28 2016-06-29 2016-06-30 
##      38338      30363      12620       9866      11605      15276      13247 
## 2016-07-01 2016-07-02 2016-07-03 2016-07-04 2016-07-05 2016-07-06 2016-07-07 
##      25711      23064       8997       6622       7493      10433       9515 
## 2016-07-08 2016-07-09 2016-07-10 2016-07-11 2016-07-12 2016-07-13 2016-07-14 
##      28589      26568       9756       7866       8187      12043      12196 
## 2016-07-15 2016-07-16 2016-07-17 2016-07-18 2016-07-19 2016-07-20 2016-07-21 
##      30154      25522      17575       8560       9151      12996      12967 
## 2016-07-22 2016-07-23 2016-07-24 2016-07-25 2016-07-26 2016-07-27 2016-07-28 
##      33377      25502      10455       9499      11314      14607      14163 
## 2016-07-29 2016-07-30 2016-07-31 2016-08-01 2016-08-02 2016-08-03 2016-08-04 
##      35176      25887      11212       7528       8477      12052      12077 
## 2016-08-05 2016-08-06 2016-08-07 2016-08-08 2016-08-09 2016-08-10 2016-08-11 
##      28042      20678       9782       9752      11592      25329      14596 
## 2016-08-12 2016-08-13 2016-08-14 2016-08-15 2016-08-16 2016-08-17 2016-08-18 
##      20144      20675      15983      12723      10242      11689      11411 
## 2016-08-19 2016-08-20 2016-08-21 2016-08-22 2016-08-23 2016-08-24 2016-08-25 
##      23855      23433      11055       8463      10406      12924      12886 
## 2016-08-26 2016-08-27 2016-08-28 2016-08-29 2016-08-30 2016-08-31 2016-09-01 
##      29816      27114      12288       9766      10021      13092       8068 
## 2016-09-02 2016-09-03 2016-09-04 2016-09-05 2016-09-06 2016-09-07 2016-09-08 
##      22278      21565       9629       6992       8103      10852      11236 
## 2016-09-09 2016-09-10 2016-09-11 2016-09-12 2016-09-13 2016-09-14 2016-09-15 
##      26369      24483      10544       8159       9627      12552      12662 
## 2016-09-16 2016-09-17 2016-09-18 2016-09-19 2016-09-20 2016-09-21 2016-09-22 
##      27179      23762      19356      10181       9945      23602      11241 
## 2016-09-23 2016-09-24 2016-09-25 2016-09-26 2016-09-27 2016-09-28 2016-09-29 
##      23653      28149      11890      10962      12589      16972      15416 
## 2016-09-30 2016-10-01 2016-10-02 2016-10-03 2016-10-04 2016-10-05 2016-10-06 
##      37707      22081      10609       8530       8625      11320      11615 
## 2016-10-07 2016-10-08 2016-10-09 2016-10-10 2016-10-11 2016-10-12 2016-10-13 
##      27871      23499      19516      10191      10135      12599      11969 
## 2016-10-14 2016-10-15 2016-10-16 2016-10-17 2016-10-18 2016-10-19 2016-10-20 
##      29876      25360      12459       8869      10533      13943      12807 
## 2016-10-21 2016-10-22 2016-10-23 2016-10-24 2016-10-25 2016-10-26 2016-10-27 
##      32500      30498      13710       9319      12060      15732      14999 
## 2016-10-28 2016-10-29 2016-10-30 2016-10-31 2016-11-01 2016-11-02 2016-11-03 
##      37288      34955      15827      11070       8272      22366      11719 
## 2016-11-04 2016-11-05 2016-11-06 2016-11-07 2016-11-08 2016-11-09 2016-11-10 
##      21531      27216      12391       8223      10144      12836      12083 
## 2016-11-11 2016-11-12 2016-11-13 2016-11-14 2016-11-15 2016-11-16 2016-11-17 
##      29674      31062      15005       9140      10783      14595      14451 
## 2016-11-18 2016-11-19 2016-11-20 2016-11-21 2016-11-22 2016-11-23 2016-11-24 
##      34876      36963      15725      11196      31332      15279      15597 
## 2016-11-25 2016-11-26 2016-11-27 2016-11-28 2016-11-29 2016-11-30 2016-12-01 
##      40865      47919      18235      11938      15605      18035      13706 
## 2016-12-02 2016-12-03 2016-12-04 2016-12-05 2016-12-06 2016-12-07 2016-12-08 
##      50732      59429      18230      13395      16639      24827      23705 
## 2016-12-09 2016-12-10 2016-12-11 2016-12-12 2016-12-13 2016-12-14 2016-12-15 
##     103699      92887      24196      19372      26945      41193      38754 
## 2016-12-16 2016-12-17 2016-12-18 2016-12-19 2016-12-20 2016-12-21 2016-12-22 
##     163573     121897      30800      32693      43970      60372     152252 
## 2016-12-23 2016-12-24 2016-12-25 2016-12-26 2016-12-27 2016-12-28 2016-12-29 
##      53030      50161      29693      44832      50820      71339      75430 
## 2016-12-30 2016-12-31 2017-01-01 2017-01-02 2017-01-03 2017-01-04 2017-01-05 
##      68730      15482      12985      30478      23008      15607      14270 
## 2017-01-06 2017-01-07 2017-01-08 2017-01-09 2017-01-10 2017-01-11 2017-01-12 
##      26611      30248      26226      14595      12014      15039      16447 
## 2017-01-13 2017-01-14 2017-01-15 2017-01-16 2017-01-17 2017-01-18 2017-01-19 
##      41204      40049      15905      12059      13932      18326      17572 
## 2017-01-20 2017-01-21 2017-01-22 2017-01-23 2017-01-24 2017-01-25 2017-01-26 
##      47102      46463      15875      11954      14492      20308      19582 
## 2017-01-27 2017-01-28 2017-01-29 2017-01-30 2017-01-31 2017-02-01 2017-02-02 
##      56591      51767      19474      13945      16394      14291      13108 
## 2017-02-03 2017-02-04 2017-02-05 2017-02-06 2017-02-07 2017-02-08 2017-02-09 
##      34005      38957      15597      11089      14128      17330      17477 
## 2017-02-10 2017-02-11 2017-02-12 2017-02-13 2017-02-14 2017-02-15 2017-02-16 
##      44503      40875      17055      12033      12481      19002      18571 
## 2017-02-17 2017-02-18 2017-02-19 2017-02-20 2017-02-21 2017-02-22 2017-02-23 
##      44446      46064      19935      14255      16595      21151      20992 
## 2017-02-24 2017-02-25 2017-02-26 2017-02-27 2017-02-28 2017-03-01 2017-03-02 
##      52211      49049      22054      15899      19110      15083      15892 
## 2017-03-03 2017-03-04 2017-03-05 2017-03-06 2017-03-07 2017-03-08 2017-03-09 
##      35384      40347      17698      12607      16006      19625      20358 
## 2017-03-10 2017-03-11 2017-03-12 2017-03-13 2017-03-14 2017-03-15 2017-03-16 
##      51690      50066      22508      17724      19660      27825      27684 
## 2017-03-17 2017-03-18 2017-03-19 2017-03-20 2017-03-21 2017-03-22 2017-03-23 
##      62959      54871      41264      23767      25020      34970      32716 
## 2017-03-24 2017-03-25 2017-03-26 2017-03-27 2017-03-28 2017-03-29 2017-03-30 
##      88906      62222      28850      28773      32733      42686      36937 
## 2017-03-31 2017-04-01 2017-04-02 2017-04-03 2017-04-04 2017-04-05 2017-04-06 
##      72719      37549      17121      20794      15985      20216      19675 
## 2017-04-07 2017-04-08 2017-04-09 2017-04-10 2017-04-11 2017-04-12 2017-04-13 
##      52568      39385      17704      15321      16481      22615      21938 
## 2017-04-14 2017-04-15 2017-04-16 2017-04-17 2017-04-18 2017-04-19 2017-04-20 
##      63404      45598      18735      15826      19081      26060      24304 
## 2017-04-21 2017-04-22 
##      70066      50554

## # A tibble: 517 × 4
##    visit_date all_visitors month  wday
##    <date>            <dbl> <dbl> <dbl>
##  1 2016-01-01          493     1     6
##  2 2016-01-02         3089     1     7
##  3 2016-01-03         3223     1     1
##  4 2016-01-04         2834     1     2
##  5 2016-01-05         2796     1     3
##  6 2016-01-06         3590     1     4
##  7 2016-01-07         4223     1     5
##  8 2016-01-08        11645     1     6
##  9 2016-01-09        12628     1     7
## 10 2016-01-10        10497     1     1
## # … with 507 more rows
## 
## Call:
## tslm(formula = all_visitors ~ month + wday, data = hpgNewts)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -27867  -8616  -2810   4193 130547 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -336.7     1858.2  -0.181    0.856    
## month          903.6      199.4   4.532 7.27e-06 ***
## wday          3753.3      338.7  11.083  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15410 on 514 degrees of freedom
## Multiple R-squared:  0.2197, Adjusted R-squared:  0.2166 
## F-statistic: 72.35 on 2 and 514 DF,  p-value: < 2.2e-16
## ETS(M,A,N) 
## 
## Call:
##  ets(y = hpgts) 
## 
##   Smoothing parameters:
##     alpha = 0.1242 
##     beta  = 0.0025 
## 
##   Initial states:
##     l = 455.3759 
##     b = 507.3136 
## 
##   sigma:  0.6147
## 
##      AIC     AICc      BIC 
## 11906.67 11906.79 11927.51

##                     ME     RMSE      MAE      MPE     MAPE     MASE      ACF1
## Training set -355.2655 15149.46 10142.28 -31.0684 55.82447 1.116884 0.3588388

## ndiffs 
##      1

## Series: hpgts 
## ARIMA(5,1,3) 
## 
## Coefficients:
##          ar1      ar2      ar3      ar4      ar5      ma1     ma2     ma3
##       0.2294  -0.5901  -0.3282  -0.3606  -0.3417  -0.9460  0.4045  0.1930
## s.e.  0.1340   0.0856   0.0959   0.0442   0.0708   0.1354  0.1655  0.1053
## 
## sigma^2 estimated as 115782978:  log likelihood=-5103.23
## AIC=10224.46   AICc=10224.85   BIC=10261.97

##                    ME     RMSE     MAE       MPE     MAPE      MASE        ACF1
## Training set 245.9129 10658.47 6097.27 -8.123753 30.33909 0.6714411 0.008618694