Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict IRDE with EF and FC (formula: IRDE ~ EF + FC). The model explains a statistically significant and substantial proportion of variance (R2 = 0.27, F(2, 997) = 182.75, p < .001, adj. R2 = 0.27). The model's intercept, corresponding to EF = 0 and FC = 0, is at 0.68 (95% CI [0.43, 0.93], t(997) = 5.30, p < .001). Within this model:
## 
##   - The effect of EF is statistically significant and positive (beta = 0.39, 95% CI [0.33, 0.46], t(997) = 12.60, p < .001; Std. beta = 0.34, 95% CI [0.29, 0.39])
##   - The effect of FC is statistically significant and positive (beta = 0.41, 95% CI [0.36, 0.47], t(997) = 14.19, p < .001; Std. beta = 0.38, 95% CI [0.33, 0.44])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict IRDE with EF and FC (formula: IRDE ~ EF + FC). The model's explanatory power is moderate (Tjur's R2 = 0.23). The model's intercept, corresponding to EF = 0 and FC = 0, is at -8.42 (95% CI [-9.70, -7.21], p < .001). Within this model:
## 
##   - The effect of EF is statistically significant and positive (beta = 1.17, 95% CI [0.93, 1.42], p < .001; Std. beta = 0.77, 95% CI [0.61, 0.93])
##   - The effect of FC is statistically significant and positive (beta = 1.64, 95% CI [1.37, 1.92], p < .001; Std. beta = 1.01, 95% CI [0.84, 1.18])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datos

IRDE = Intención representación demo

EF = Estilo Familiar

FC = Formación Ciudadana

La relación es influenciada por el estilo parental y por el modelo pedagógico

IRDE ~ EF + FC

Análisis Exploratorio

factanal(davidSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = davidSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.564 0.626 0.604 0.568 0.596 0.482 0.462 0.463 0.426 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1                  0.651 
## i2                  0.583 
## i3                  0.656 
## i4          0.645         
## i5          0.635         
## i6          0.724         
## i7  0.745                 
## i8  0.725                 
## i9  0.730                 
## 
##                Factor1 Factor2 Factor3
## SS loadings       1.62   1.344   1.199
## Proportion Var    0.18   0.149   0.133
## Cumulative Var    0.18   0.329   0.463
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000 -0.4716 -0.5067
## Factor2  -0.472  1.0000  0.0195
## Factor3  -0.507  0.0195  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 17.52 on 12 degrees of freedom.
## The p-value is 0.131
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

davidModel <- 
  "EF =~ i1 + i2 + i3
   FC =~ i4 + i5 + i6
   IRDE =~ i7 + i8 + i9
   IRDE ~ EF
   IRDE ~ FC"

david.fit <- 
  cfa(davidModel, 
      data = davidSimData)

Revisamos las cargas

inspect(david.fit, 
        what = "std")$lambda
##       EF    FC  IRDE
## i1 0.668 0.000 0.000
## i2 0.624 0.000 0.000
## i3 0.603 0.000 0.000
## i4 0.000 0.662 0.000
## i5 0.000 0.636 0.000
## i6 0.000 0.712 0.000
## i7 0.000 0.000 0.728
## i8 0.000 0.000 0.731
## i9 0.000 0.000 0.763

>.6

Evaluamos el modelo

summary(david.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                24.861
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.413
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2177.667
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       0.999
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10247.254
##   Loglikelihood unrestricted model (H1)     -10234.824
##                                                       
##   Akaike (AIC)                               20536.508
##   Bayesian (BIC)                             20639.571
##   Sample-size adjusted Bayesian (BIC)        20572.874
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.006
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.027
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EF =~                                               
##     i1                1.000                           
##     i2                1.022    0.080   12.743    0.000
##     i3                0.874    0.069   12.619    0.000
##   FC =~                                               
##     i4                1.000                           
##     i5                0.952    0.066   14.428    0.000
##     i6                1.092    0.073   14.879    0.000
##   IRDE =~                                             
##     i7                1.000                           
##     i8                0.967    0.050   19.337    0.000
##     i9                1.031    0.052   19.758    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   IRDE ~                                              
##     EF                0.571    0.057    9.980    0.000
##     FC                0.585    0.053   11.042    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EF ~~                                               
##     FC                0.006    0.014    0.420    0.675
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.357    0.026   13.912    0.000
##    .i2                0.472    0.030   15.657    0.000
##    .i3                0.385    0.023   16.388    0.000
##    .i4                0.413    0.026   15.643    0.000
##    .i5                0.430    0.026   16.567    0.000
##    .i6                0.374    0.028   13.568    0.000
##    .i7                0.376    0.024   15.984    0.000
##    .i8                0.344    0.022   15.830    0.000
##    .i9                0.322    0.022   14.434    0.000
##     EF                0.288    0.031    9.195    0.000
##     FC                0.322    0.033    9.740    0.000
##    .IRDE              0.215    0.023    9.215    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

david_mean <- 
  davidSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

david_sd <- 
  davidSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

david_sd_mean <- 
  david_mean |> 
  bind_rows(david_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

david_cronbach_RE <-
  davidSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

david_cronbach_DE <-
  davidSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

david_cronbach_CD <-
  davidSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

david_cronbach <- 
  tibble(RE = david_cronbach_RE$alpha,
         DE = david_cronbach_DE$alpha,
         CD = david_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(david_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
         Cronbach, 
         promedio, 
         des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
                )
## Joining, by = "Variable_compuesta"
rm(david_mean,
   david_sd, 
   david_sd_mean)

david_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.66 2.90 0.80
DE 3 0.71 3.13 0.86
CD 3 0.78 3.01 0.89

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- davidSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- davidSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- davidSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

david_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(david_latent))
##      RE   DE   CD
## RE 1.00 0.04 0.25
## DE 0.04 1.00 0.25
## CD 0.25 0.25 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.2349 0.0000
## DE 0.2349        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(david.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)