Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict REL with EP and MP (formula: REL ~ EP + MP). The model explains a statistically significant and substantial proportion of variance (R2 = 0.37, F(2, 997) = 287.64, p < .001, adj. R2 = 0.36). The model's intercept, corresponding to EP = 0 and MP = 0, is at -0.17 (95% CI [-0.42, 0.08], t(997) = -1.35, p = 0.177). Within this model:
## 
##   - The effect of EP is statistically significant and positive (beta = 0.43, 95% CI [0.37, 0.48], t(997) = 15.28, p < .001; Std. beta = 0.39, 95% CI [0.34, 0.44])
##   - The effect of MP is statistically significant and positive (beta = 0.56, 95% CI [0.51, 0.62], t(997) = 18.80, p < .001; Std. beta = 0.47, 95% CI [0.42, 0.52])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict REL with MP and RE (formula: REL ~ MP + RE). The model's explanatory power is moderate (Tjur's R2 = 0.23). The model's intercept, corresponding to MP = 0 and RE = 0, is at -8.42 (95% CI [-9.70, -7.21], p < .001). Within this model:
## 
##   - The effect of MP is statistically significant and positive (beta = 1.64, 95% CI [1.37, 1.92], p < .001; Std. beta = 1.01, 95% CI [0.84, 1.18])
##   - The effect of RE is statistically significant and positive (beta = 1.17, 95% CI [0.93, 1.42], p < .001; Std. beta = 0.77, 95% CI [0.61, 0.93])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datos

EP = Estilo Parental REL = Relación MP = Modelo Pedagógico

La relación es influenciada por el estilo parental y por el modelo pedagógico

REL ~ EP + MP

Análisis Exploratorio

factanal(danielSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = danielSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.518 0.643 0.650 0.554 0.531 0.596 0.400 0.454 0.370 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1                  0.741 
## i2                  0.578 
## i3                  0.552 
## i4          0.659         
## i5          0.694         
## i6          0.634         
## i7  0.719                 
## i8  0.671                 
## i9  0.848                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.701   1.336   1.196
## Proportion Var   0.189   0.148   0.133
## Cumulative Var   0.189   0.337   0.470
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000  0.5371  0.5385
## Factor2   0.537  1.0000  0.0146
## Factor3   0.539  0.0146  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 8.16 on 12 degrees of freedom.
## The p-value is 0.773
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

danielModel <- 
  "EP =~ i1 + i2 + i3
   MP =~ i4 + i5 + i6
   REL =~ i7 + i8 + i9
   REL ~ EP
   REL ~ MP"

daniel.fit <- 
  cfa(danielModel, 
      data = danielSimData)

Revisamos las cargas

inspect(daniel.fit, 
        what = "std")$lambda
##       EP    MP   REL
## i1 0.657 0.000 0.000
## i2 0.610 0.000 0.000
## i3 0.608 0.000 0.000
## i4 0.000 0.675 0.000
## i5 0.000 0.678 0.000
## i6 0.000 0.634 0.000
## i7 0.000 0.000 0.784
## i8 0.000 0.000 0.747
## i9 0.000 0.000 0.769

>.6

Evaluamos el modelo

summary(daniel.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                20.060
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.693
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2359.259
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.003
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9510.951
##   Loglikelihood unrestricted model (H1)      -9500.921
##                                                       
##   Akaike (AIC)                               19063.901
##   Bayesian (BIC)                             19166.964
##   Sample-size adjusted Bayesian (BIC)        19100.267
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.020
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EP =~                                               
##     i1                1.000                           
##     i2                0.800    0.063   12.784    0.000
##     i3                0.903    0.071   12.771    0.000
##   MP =~                                               
##     i4                1.000                           
##     i5                0.937    0.063   14.887    0.000
##     i6                0.906    0.063   14.488    0.000
##   REL =~                                              
##     i7                1.000                           
##     i8                1.056    0.048   21.931    0.000
##     i9                1.143    0.051   22.414    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   REL ~                                               
##     EP                0.557    0.050   11.096    0.000
##     MP                0.560    0.045   12.390    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   EP ~~                                               
##     MP                0.005    0.014    0.354    0.724
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.372    0.026   14.594    0.000
##    .i2                0.305    0.019   16.298    0.000
##    .i3                0.392    0.024   16.355    0.000
##    .i4                0.396    0.026   15.286    0.000
##    .i5                0.342    0.023   15.162    0.000
##    .i6                0.404    0.024   16.711    0.000
##    .i7                0.204    0.014   14.778    0.000
##    .i8                0.288    0.018   16.387    0.000
##    .i9                0.294    0.019   15.470    0.000
##     EP                0.283    0.031    9.148    0.000
##     MP                0.330    0.033    9.968    0.000
##    .REL               0.132    0.015    8.703    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

daniel_mean <- 
  danielSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

daniel_sd <- 
  danielSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

daniel_sd_mean <- 
  daniel_mean |> 
  bind_rows(daniel_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

daniel_cronbach_RE <-
  danielSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

daniel_cronbach_DE <-
  danielSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

daniel_cronbach_CD <-
  danielSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

daniel_cronbach <- 
  tibble(RE = daniel_cronbach_RE$alpha,
         DE = daniel_cronbach_DE$alpha,
         CD = daniel_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(daniel_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
                Cronbach, 
                promedio, 
                des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
  )
## Joining, by = "Variable_compuesta"
rm(daniel_mean,
   daniel_sd, 
   daniel_sd_mean)

daniel_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.66 3.37 0.81
DE 3 0.70 3.11 0.85
CD 3 0.81 2.54 0.73

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- danielSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- danielSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- danielSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

daniel_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(daniel_latent))
##      RE   DE   CD
## RE 1.00 0.04 0.26
## DE 0.04 1.00 0.33
## CD 0.26 0.33 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.2514 0.0000
## DE 0.2514        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(daniel.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)