Artículo 4 - ASN

Cargando los datos

Cleaning data

Citation network

Author’s table

Academic Social Network

Inferential statistic

Merging data

Linear Regression

Correlation between ego density and production

Artículo 3 - LM

Tabla

Análisis

## We fitted a linear model (estimated using OLS) to predict DE with RE and CD (formula: DE ~ RE + CD). The model explains a statistically significant and substantial proportion of variance (R2 = 0.37, F(2, 997) = 287.64, p < .001, adj. R2 = 0.36). The model's intercept, corresponding to RE = 0 and CD = 0, is at -0.17 (95% CI [-0.42, 0.08], t(997) = -1.35, p = 0.177). Within this model:
## 
##   - The effect of RE is statistically significant and positive (beta = 0.43, 95% CI [0.37, 0.48], t(997) = 15.28, p < .001; Std. beta = 0.39, 95% CI [0.34, 0.44])
##   - The effect of CD is statistically significant and positive (beta = 0.56, 95% CI [0.51, 0.62], t(997) = 18.80, p < .001; Std. beta = 0.47, 95% CI [0.42, 0.52])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using the Wald approximation.

Artículo 2 - GLM

Tabla

Análisis

## We fitted a logistic model (estimated using ML) to predict DE with RE and CD (formula: DE ~ RE + CD). The model's explanatory power is moderate (Tjur's R2 = 0.23). The model's intercept, corresponding to RE = 0 and CD = 0, is at 8.42 (95% CI [7.21, 9.70], p < .001). Within this model:
## 
##   - The effect of RE is statistically significant and negative (beta = -1.17, 95% CI [-1.42, -0.93], p < .001; Std. beta = -0.77, 95% CI [-0.93, -0.61])
##   - The effect of CD is statistically significant and negative (beta = -1.64, 95% CI [-1.92, -1.37], p < .001; Std. beta = -1.01, 95% CI [-1.18, -0.84])
## 
## Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using

Artículo 1 - SEM

Simulación de datosPC = Pensamiento Crítico

RE = Ritual Evaluativo DE = Deserción Escolar CD = Creencias de los docentes

La deserción escolar es influenciada por el ritual evaluativo y por la creencia de los docente

DE ~ RE + CD

Análisis Exploratorio

factanal(AbelardoSimData, factors = 3, rotation = "promax")
## 
## Call:
## factanal(x = AbelardoSimData, factors = 3, rotation = "promax")
## 
## Uniquenesses:
##    i1    i2    i3    i4    i5    i6    i7    i8    i9 
## 0.610 0.572 0.652 0.582 0.627 0.511 0.364 0.427 0.345 
## 
## Loadings:
##    Factor1 Factor2 Factor3
## i1                  0.598 
## i2                  0.674 
## i3                  0.596 
## i4          0.647         
## i5          0.622         
## i6          0.687         
## i7  0.719                 
## i8  0.690                 
## i9  0.830                 
## 
##                Factor1 Factor2 Factor3
## SS loadings      1.687   1.287   1.176
## Proportion Var   0.187   0.143   0.131
## Cumulative Var   0.187   0.330   0.461
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000  0.5077  0.5917
## Factor2   0.508  1.0000 -0.0271
## Factor3   0.592 -0.0271  1.0000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 12.06 on 12 degrees of freedom.
## The p-value is 0.441
Valor Concepto
< 0.39 pobre
.4 - .49 Justo
.5 - .59 Bueno
.6 - .69 Muy bueno
.7 + Excelente

Modelo

Creamos el modelo

AbelardoModel <- 
  "RE =~ i1 + i2 + i3
   DE =~ i4 + i5 + i6
   CD =~ i7 + i8 + i9
   DE ~ RE
   DE ~ CD"

Abelardo.fit <- 
  cfa(AbelardoModel, 
      data = AbelardoSimData)

Revisamos las cargas

inspect(Abelardo.fit, 
        what = "std")$lambda
##       RE    DE    CD
## i1 0.645 0.000 0.000
## i2 0.632 0.000 0.000
## i3 0.588 0.000 0.000
## i4 0.000 0.642 0.000
## i5 0.000 0.602 0.000
## i6 0.000 0.709 0.000
## i7 0.000 0.000 0.805
## i8 0.000 0.000 0.762
## i9 0.000 0.000 0.794

>.6

Evaluamos el modelo

summary(Abelardo.fit, 
        # standardized = TRUE, 
        fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                22.292
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.562
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2511.764
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.001
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9805.686
##   Loglikelihood unrestricted model (H1)      -9794.540
##                                                       
##   Akaike (AIC)                               19653.372
##   Bayesian (BIC)                             19756.435
##   Sample-size adjusted Bayesian (BIC)        19689.737
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.024
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.018
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   RE =~                                               
##     i1                1.000                           
##     i2                0.930    0.072   12.908    0.000
##     i3                0.865    0.069   12.555    0.000
##   DE =~                                               
##     i4                1.000                           
##     i5                0.804    0.058   13.968    0.000
##     i6                0.947    0.063   15.046    0.000
##   CD =~                                               
##     i7                1.000                           
##     i8                1.020    0.043   23.777    0.000
##     i9                1.092    0.044   24.657    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   DE ~                                                
##     RE               -0.448    0.061   -7.399    0.000
##     CD                0.742    0.056   13.273    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   RE ~~                                               
##     CD                0.188    0.019    9.861    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .i1                0.460    0.030   15.107    0.000
##    .i2                0.425    0.027   15.567    0.000
##    .i3                0.464    0.027   17.024    0.000
##    .i4                0.437    0.026   16.652    0.000
##    .i5                0.349    0.020   17.790    0.000
##    .i6                0.273    0.019   14.160    0.000
##    .i7                0.224    0.015   14.746    0.000
##    .i8                0.310    0.019   16.679    0.000
##    .i9                0.287    0.019   15.275    0.000
##     RE                0.327    0.036    9.004    0.000
##    .DE                0.140    0.020    6.991    0.000
##     CD                0.411    0.029   14.219    0.000
Medidas Valor a revisar
chi-square p < .05
CFI - Comparative Fit Index >.9
TLI - Tuker-Lewis Index >.9
RMSEA <.05

Tabla 1

Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)

abelardo_mean <- 
  AbelardoSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), mean))

abelardo_sd <- 
  AbelardoSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3),
         DE = mean(i4, i5, i6), 
         CD = mean(i7, i8, i9)) |> 
  dplyr::select(RE, DE, CD) |> 
  ungroup() |> 
  summarise(across(everything(), sd))

abelardo_sd_mean <- 
  abelardo_mean |> 
  bind_rows(abelardo_sd) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         promedio = "1",
         des_est = "2") |> 
  mutate(promedio = round(promedio, digits = 2),
         des_est = round(des_est, digits = 2))

abelardo_cronbach_RE <-
  AbelardoSimData |> 
  dplyr::select(i1, i2, i3) |> 
  cronbach.alpha() 

abelardo_cronbach_DE <-
  AbelardoSimData |> 
  dplyr::select(i4, i5, i6) |> 
  cronbach.alpha() 

abelardo_cronbach_CD <-
  AbelardoSimData |> 
  dplyr::select(i7, i8, i9) |> 
  cronbach.alpha() 

abelardo_cronbach <- 
  tibble(RE = abelardo_cronbach_RE$alpha,
         DE = abelardo_cronbach_DE$alpha,
         CD = abelardo_cronbach_CD$alpha) |> 
  transpose_df() |> 
  rename(Variable_compuesta = rowname,
         Cronbach = "1") |> 
  right_join(abelardo_sd_mean) |> 
  dplyr::select(Variable_compuesta, 
                Cronbach, 
                promedio, 
                des_est) |> 
  mutate(Cronbach = round(Cronbach, 
                          digits = 2),
         No_items = 3) |> 
  dplyr::select(Variable_compuesta,
                No_items,
                Cronbach,
                promedio,
                des_est
  )
## Joining, by = "Variable_compuesta"
rm(abelardo_mean,
   abelardo_sd, 
   abelardo_sd_mean)

abelardo_cronbach |> 
  gt() |> 
  tab_header(
    title = "Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)"
  )
Tabla 1 Promedios, desviaciones estándar, confiabilidad interna y variables compuestas (N = 1000)
Variable_compuesta No_items Cronbach promedio des_est
RE 3 0.65 3.09 0.89
DE 3 0.69 3.02 0.86
CD 3 0.83 2.86 0.80

Estadísticas a tener en cuenta

Cronbach Alpha Concepto
<.6 Inaceptable - Se eliminan items
6 - .64 Indeseable
.65 - .69 Aceptable minimamente
.7 - .79 Respetable
.8 - .89 Muy bueno
.9> Demasiado buenos - eliminar items

Tabla 2

Matrix de correlaciones

RE <- AbelardoSimData |> 
  rowwise() |> 
  mutate(RE = mean(i1, i2, i3)) 

DE <- AbelardoSimData |> rowwise() |> mutate(DE = mean(i4, i5, i6))
CD <- AbelardoSimData |> rowwise() |> mutate(CD = mean(i7, i8, i9))

abelardo_latent <- 
  tibble(RE = RE$RE,
         DE = DE$DE,
         CD = CD$CD)

rcorr(as.matrix(abelardo_latent))
##      RE   DE   CD
## RE 1.00 0.02 0.29
## DE 0.02 1.00 0.32
## CD 0.29 0.32 1.00
## 
## n= 1000 
## 
## 
## P
##    RE     DE     CD    
## RE        0.5711 0.0000
## DE 0.5711        0.0000
## CD 0.0000 0.0000

Diagrama del modelo

semPaths(Abelardo.fit, 
         what = "est", 
         fade = FALSE, 
         residuals = FALSE, 
         edge.label.cex = 0.75)