As the "cc.genes$s.genes/g2m.genes have been written for Human, we are supposed to change the organism here, i.e., we need to align all genes in mice. To this end, we should use the following functions.

library(biomaRt)
library(Seurat)
## Attaching SeuratObject
library(org.Hs.eg.db)
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: IRanges
## Loading required package: S4Vectors
## 
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
## 
##     expand.grid
## 
library(org.Mm.eg.db)
## 
library(Nebulosa)
## Loading required package: ggplot2
## Loading required package: patchwork
library(devtools)
## Loading required package: usethis
obj <- readRDS("/mnt/nectar_volume/home/eraz0001/new/alberto final files/C1L.rds")

Cell cycle Please estimate cell cycle phase of each cell and make a table to describe how many cells per phase.

convertHumanGeneList <- function(x){
  require("biomaRt")
  human = useMart("ensembl", dataset = "hsapiens_gene_ensembl", host = "https://dec2021.archive.ensembl.org/")
  mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl",host = "https://dec2021.archive.ensembl.org/")
  genesV2 = getLDS(attributes = c("hgnc_symbol"), 
                   filters = "hgnc_symbol", 
                   values = x , 
                   mart = human,
                   attributesL = c("mgi_symbol"), 
                   martL = mouse, uniqueRows=T)
  humanx <- unique(genesV2[, 2])
  return(humanx)}
s_gene <- convertHumanGeneList(cc.genes$s.genes)
g2m_gene <- convertHumanGeneList(cc.genes$g2m.genes)
obj <- CellCycleScoring(obj, s.features = s_gene, g2m.features = g2m_gene, set.ident = TRUE)
a3 <- DimPlot(obj)
a3

We can regress out the data pertinet to cell cycle using the following command:

table(obj@meta.data$Phase)
## 
##   G1  G2M    S 
## 4051 1728 2465
head(obj)
##                            orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8
## AAACCCAAGACCTGGA-1_1_1_1_1        C1L       5447         1683               6
## AAACCCACAATACCCA-1_1_1_1_1        C1L       8203         2268              11
## AAACCCACAGTACTAC-1_1_1_1_1        C1L       3869         1309               3
## AAACCCAGTTATGGTC-1_1_1_1_1        C1L       9335         2557               2
## AAACCCAGTTGAGAGC-1_1_1_1_1        C1L       2544         1060               4
## AAACCCAGTTGCTCAA-1_1_1_1_1        C1L      13549         3026               3
## AAACCCATCAACTCTT-1_1_1_1_1        C1L       6375         1843               4
## AAACGAAAGCTTGTGT-1_1_1_1_1        C1L       2104          953               5
## AAACGAAAGGTGCTAG-1_1_1_1_1        C1L       3107         1218               5
## AAACGAAAGTCCGCCA-1_1_1_1_1        C1L        991          512               8
##                            seurat_clusters nCount_SCT nFeature_SCT
## AAACCCAAGACCTGGA-1_1_1_1_1               3       3033         1626
## AAACCCACAATACCCA-1_1_1_1_1              17       3269         1826
## AAACCCACAGTACTAC-1_1_1_1_1               4       3257         1309
## AAACCCAGTTATGGTC-1_1_1_1_1               1       3217         2068
## AAACCCAGTTGAGAGC-1_1_1_1_1              10       2640         1060
## AAACCCAGTTGCTCAA-1_1_1_1_1               2       2936         1724
## AAACCCATCAACTCTT-1_1_1_1_1               6       3018         1578
## AAACGAAAGCTTGTGT-1_1_1_1_1               5       2844          952
## AAACGAAAGGTGCTAG-1_1_1_1_1              11       3063         1218
## AAACGAAAGTCCGCCA-1_1_1_1_1               0       2271          546
##                            SCT_snn_res.0.8 percent.mt nFeature_RNA_MAD
## AAACCCAAGACCTGGA-1_1_1_1_1               3 0.00000000        0.3925254
## AAACCCACAATACCCA-1_1_1_1_1              17 0.00000000        0.9813830
## AAACCCACAGTACTAC-1_1_1_1_1               4 0.03944773       -0.1035465
## AAACCCAGTTATGGTC-1_1_1_1_1               1 0.00000000        1.2181264
## AAACCCAGTTGAGAGC-1_1_1_1_1              10 0.00000000       -0.5200306
## AAACCCAGTTGCTCAA-1_1_1_1_1               2 0.00000000        1.5505464
## AAACCCATCAACTCTT-1_1_1_1_1               6 0.00000000        0.5717895
## AAACGAAAGCTTGTGT-1_1_1_1_1               5 0.04405286       -0.7300729
## AAACGAAAGGTGCTAG-1_1_1_1_1              11 0.07049700       -0.2457732
## AAACGAAAGTCCGCCA-1_1_1_1_1               0 0.00000000       -1.9564436
##                            nCount_RNA_MAD      S.Score   G2M.Score Phase
## AAACCCAAGACCTGGA-1_1_1_1_1     0.45828981 -0.078262457 -0.07953102    G1
## AAACCCACAATACCCA-1_1_1_1_1     0.98712902 -0.091223831 -0.08668466    G1
## AAACCCACAGTACTAC-1_1_1_1_1     0.01646269 -0.038280103 -0.02271644    G1
## AAACCCAGTTATGGTC-1_1_1_1_1     1.15409935  0.039875252  0.09625804   G2M
## AAACCCAGTTGAGAGC-1_1_1_1_1    -0.52506485 -0.056810200 -0.02980515    G1
## AAACCCAGTTGCTCAA-1_1_1_1_1     1.63528641 -0.068941917  0.17515311   G2M
## AAACCCATCAACTCTT-1_1_1_1_1     0.66148816 -0.030312564 -0.09154916    G1
## AAACGAAAGCTTGTGT-1_1_1_1_1    -0.77034231 -0.049507830 -0.02134039    G1
## AAACGAAAGGTGCTAG-1_1_1_1_1    -0.26684183 -0.063724244 -0.07334346    G1
## AAACGAAAGTCCGCCA-1_1_1_1_1    -1.74278744  0.009486496 -0.07151220     S
##                            old.ident
## AAACCCAAGACCTGGA-1_1_1_1_1         3
## AAACCCACAATACCCA-1_1_1_1_1        17
## AAACCCACAGTACTAC-1_1_1_1_1         4
## AAACCCAGTTATGGTC-1_1_1_1_1         1
## AAACCCAGTTGAGAGC-1_1_1_1_1        10
## AAACCCAGTTGCTCAA-1_1_1_1_1         2
## AAACCCATCAACTCTT-1_1_1_1_1         6
## AAACGAAAGCTTGTGT-1_1_1_1_1         5
## AAACGAAAGGTGCTAG-1_1_1_1_1        11
## AAACGAAAGTCCGCCA-1_1_1_1_1         0
plot_density(obj, c("Mcm4",     "Rrm2" ,    "Exo1"  ,   "Cdc45" ,   "Mcm2" ,    "Uhrf1"  ,  "Chaf1b" ,  "Gmnn"  ,   "Msh2" ,    "Fen1"))

g2m_gene
##  [1] "Cbx5"    "Cdc25c"  "Smc4"    "Gtse1"   "Dlgap5"  "Ctcf"    "Cdca2"  
##  [8] "Kif20b"  "Cks2"    "Hmgb2"   "Ckap2"   "Ncapd2"  "Anp32e"  "G2e3"   
## [15] "Cdk1"    "Ttk"     "Cdca3"   "Top2a"   "Gas2l3"  "Tacc3"   "Cdca8"  
## [22] "Ndc80"   "Rangap1" "Ect2"    "Cks1b"   "Anln"    "Cenpe"   "Birc5"  
## [29] "Hjurp"   "Lbr"     "Tpx2"    "Cdc20"   "Psrc1"   "Kif2c"   "Cenpa"  
## [36] "Cenpf"   "Aurkb"   "Kif11"   "Nek2"    "Ccnb2"   "Hmmr"    "Kif23"  
## [43] "Mki67"   "Tubb4b"  "Nusap1"  "Bub1"    "Ckap5"   "Nuf2"    "Ube2c"  
## [50] "Aurka"   "Ckap2l"
plot_density(obj, c("Tacc3",   "Gas2l3",  "Hmgb2" ,  "Cks2"  ,  "Ncapd2" , "Anp32e" , "Ckap2"  , "Aurkb" , "Kif11"  , "Nek2"  ,  "Ccnb2" ,  "Kif23" ,  "Hmmr"))

as<- RidgePlot(obj, features = c("Tacc3",   "Gas2l3",  "Hmgb2"))
as
## Picking joint bandwidth of 2.5e-06
## Picking joint bandwidth of 2.02e-06
## Picking joint bandwidth of 0.0306

Regress out the cell-cycle pertinent markers/genes

obj <- ScaleData(obj, vars.to.regress = c("S.Score", "G2M.Score"), features = rownames(obj))
## Regressing out S.Score, G2M.Score
## Centering and scaling data matrix
table(obj@meta.data$Phase)
## 
##   G1  G2M    S 
## 4051 1728 2465

Compare this one with the first table result. Many cells have been deleted!

obj <- RunPCA(obj, features = VariableFeatures(obj), nfeatures.print = 5)
## Warning in PrepDR(object = object, features = features, verbose = verbose): The
## following 3 features requested have zero variance (running reduction without
## them): AC166061.1, Klra17, Fam90a1b
## PC_ 1 
## Positive:  Tshz2, Dlc1, Ebf1, Ebf2, Auts2 
## Negative:  Gm28653, Ryr1, Rreb1, Chd7, Kcnk13 
## PC_ 2 
## Positive:  Mrc1, Dock2, Inpp5d, Adgre1, F13a1 
## Negative:  Ryr1, Gm28653, Airn, Msi2, Cap2 
## PC_ 3 
## Positive:  Col11a1, Col2a1, Sox6, Wwp2, Chst11 
## Negative:  Sorcs2, Celf2, Ebf3, Ebf2, Tcf7l2 
## PC_ 4 
## Positive:  Pax7, Npas3, Nectin1, Zfp536, Adcy2 
## Negative:  Alpk3, Myom3, Ldb3, Trim55, Casq2 
## PC_ 5 
## Positive:  Flt1, Pecam1, Ptprb, Cyyr1, Adgrf5 
## Negative:  Meg3, Zfp385b, Celf2, Col2a1, Nrg1
obj <- RunPCA(obj, features = c(s_gene, g2m_gene))
## Warning in irlba(A = t(x = object), nv = npcs, ...): You're computing too large
## a percentage of total singular values, use a standard svd instead.
## PC_ 1 
## Positive:  Cenpf, Ckap2, Cenpe, Dlgap5, Cenpa, Kif23, Gas2l3, Kif20b, Ckap2l, Cdc25c 
##     Casp8ap2, Ect2, Hmmr, Ccnb2, Msh2, Anln, Tipin, Kif2c, Cdca7, Mcm6 
##     Ung, G2e3, Cks2, Nasp, Rfc2, Blm, Nusap1, Hells, Psrc1, Nek2 
## Negative:  Cbx5, Top2a, Anp32e, Smc4, Clspn, Lbr, Ctcf, Hmgb2, Kif11, Ccne2 
##     Rad51, Rrm2, Ttk, Cdc45, Tyms, Brip1, Exo1, Wdr76, Slbp, Rad51ap1 
##     Prim1, Mki67, E2f8, Cdca3, Nuf2, Rangap1, Uhrf1, Ncapd2, Mcm2, Cdca2 
## PC_ 2 
## Positive:  Rad51ap1, Clspn, Cdca2, Ncapd2, Cdca8, Top2a, Nusap1, Anln, E2f8, Brip1 
##     Ndc80, Blm, Rrm2, Cdc45, Rad51, Aurkb, Tacc3, Ckap2l, Kif23, Tpx2 
##     Slbp, Birc5, Nuf2, Tyms, Gmnn, Kif20b, Ect2, Kif11, Ccne2, Rangap1 
## Negative:  Cbx5, Nasp, Ctcf, Casp8ap2, Lbr, Ckap5, Ung, Pcna, Hmgb2, Dtl 
##     G2e3, Anp32e, Mcm6, Hells, Mcm4, Msh2, Gas2l3, Rpa2, Kif2c, Ubr7 
##     Cdc25c, Smc4, Cdca7, Wdr76, Ccnb2, Cdc6, Ckap2, Hjurp, Tubb4b, Cenpf 
## PC_ 3 
## Positive:  Ect2, Blm, Rpa2, Hjurp, Ckap5, Dscc1, Pola1, Ckap2, Wdr76, Brip1 
##     Gas2l3, Tyms, Ctcf, Usp1, Cdk1, Chaf1b, Ccnb2, Dtl, Rad51, Kif2c 
##     Lbr, Rangap1, Ttk, Aurkb, Anln, Fen1, Kif11, Ndc80, Birc5, Ccne2 
## Negative:  Mki67, Nasp, Hmmr, Rad51ap1, Tpx2, Bub1, Rrm2, Cenpf, Mcm6, Hmgb2 
##     Msh2, Exo1, Casp8ap2, Kif23, Cdca2, Rrm1, Pcna, Cdca7, Mcm5, Cdca8 
##     Clspn, Gmnn, Slbp, Mcm4, Cdc6, Cenpe, Nuf2, Ung, Cdc45, Smc4 
## PC_ 4 
## Positive:  Hells, Wdr76, Tacc3, Cdc45, Casp8ap2, Brip1, Rad51ap1, G2e3, Top2a, Prim1 
##     Mcm6, Hmgb2, Cenpe, Kif20b, Blm, Ect2, Lbr, E2f8, Slbp, Cks2 
##     Nuf2, Smc4, Cdca8, Nek2, Ttk, Gas2l3, Ckap2, Mcm2, Dlgap5, Dscc1 
## Negative:  Pola1, Rrm2, Cdca7, Nusap1, Kif23, Ctcf, Tpx2, Mcm5, Ubr7, Rad51 
##     Rangap1, Birc5, Tipin, Ccne2, Chaf1b, Dtl, Cbx5, Ckap5, Usp1, Gmnn 
##     Tyms, Uhrf1, Rpa2, Cenpf, Rfc2, Cenpa, Anp32e, Ncapd2, Ndc80, Gtse1 
## PC_ 5 
## Positive:  Hjurp, Rrm1, Dlgap5, Cdc6, Cdk1, Ckap2l, Cdca8, Ung, Ubr7, G2e3 
##     Ccnb2, Slbp, Ect2, Mcm5, Gmnn, Rad51, Aurka, Brip1, Ttk, Rad51ap1 
##     Nasp, Pola1, Kif2c, Lbr, Rpa2, Kif23, Cdc45, Hmgb2, Cdc20, Cdca2 
## Negative:  Dtl, Rfc2, Cenpe, Mcm2, Ndc80, Nusap1, Ctcf, Nuf2, Blm, Wdr76 
##     Mki67, Gas2l3, Cenpf, Anln, Tpx2, Psrc1, Kif11, Fen1, Cks2, Pcna 
##     Casp8ap2, Gtse1, Tyms, Gins2, Tipin, Top2a, Mcm6, Cdca7, E2f8, Mcm4
a4 <- DimPlot(obj)
a4

Comparing b4 and after cell cycle regression:

a3 + a4

session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 4.0.2 (2020-06-22)
##  os       Ubuntu 20.04.4 LTS
##  system   x86_64, linux-gnu
##  ui       X11
##  language (EN)
##  collate  en_AU.UTF-8
##  ctype    en_AU.UTF-8
##  tz       Australia/Melbourne
##  date     2022-05-06
##  pandoc   2.11.4 @ /usr/lib/rstudio-server/bin/pandoc/ (via rmarkdown)
## 
## ─ Packages ───────────────────────────────────────────────────────────────────
##  package              * version  date (UTC) lib source
##  abind                  1.4-5    2016-07-21 [1] CRAN (R 4.0.2)
##  AnnotationDbi        * 1.52.0   2020-10-27 [1] Bioconductor
##  askpass                1.1      2019-01-13 [1] CRAN (R 4.0.2)
##  assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.0.2)
##  beeswarm               0.4.0    2021-06-01 [1] CRAN (R 4.0.2)
##  Biobase              * 2.50.0   2020-10-27 [1] Bioconductor
##  BiocFileCache          1.14.0   2020-10-27 [1] Bioconductor
##  BiocGenerics         * 0.36.1   2021-04-16 [1] Bioconductor
##  biomaRt              * 2.46.3   2021-02-09 [1] Bioconductor
##  bit                    4.0.4    2020-08-04 [1] CRAN (R 4.0.2)
##  bit64                  4.0.5    2020-08-30 [1] CRAN (R 4.0.2)
##  bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.0.2)
##  blob                   1.2.2    2021-07-23 [1] CRAN (R 4.0.2)
##  brio                   1.1.3    2021-11-30 [1] CRAN (R 4.0.2)
##  bslib                  0.3.1    2021-10-06 [1] CRAN (R 4.0.2)
##  cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.0.2)
##  callr                  3.7.0    2021-04-20 [1] CRAN (R 4.0.2)
##  cli                    3.2.0    2022-02-14 [1] CRAN (R 4.0.2)
##  cluster                2.1.3    2022-03-28 [1] CRAN (R 4.0.2)
##  codetools              0.2-16   2018-12-24 [2] CRAN (R 4.0.2)
##  colorspace             2.0-2    2021-06-24 [1] CRAN (R 4.0.2)
##  cowplot                1.1.1    2020-12-30 [1] CRAN (R 4.0.2)
##  crayon                 1.4.2    2021-10-29 [1] CRAN (R 4.0.2)
##  curl                   4.3.2    2021-06-23 [1] CRAN (R 4.0.2)
##  data.table             1.14.2   2021-09-27 [1] CRAN (R 4.0.2)
##  DBI                    1.1.2    2021-12-20 [1] CRAN (R 4.0.2)
##  dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.0.2)
##  DelayedArray           0.16.3   2021-03-24 [1] Bioconductor
##  deldir                 1.0-6    2021-10-23 [1] CRAN (R 4.0.2)
##  desc                   1.4.0    2021-09-28 [1] CRAN (R 4.0.2)
##  devtools             * 2.4.3    2021-11-30 [1] CRAN (R 4.0.2)
##  digest                 0.6.29   2021-12-01 [1] CRAN (R 4.0.2)
##  dplyr                  1.0.8    2022-02-08 [1] CRAN (R 4.0.2)
##  ellipsis               0.3.2    2021-04-29 [1] CRAN (R 4.0.2)
##  evaluate               0.15     2022-02-18 [1] CRAN (R 4.0.2)
##  fansi                  1.0.2    2022-01-14 [1] CRAN (R 4.0.2)
##  farver                 2.1.0    2021-02-28 [1] CRAN (R 4.0.2)
##  fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.0.2)
##  fitdistrplus           1.1-6    2021-09-28 [1] CRAN (R 4.0.2)
##  fs                     1.5.2    2021-12-08 [1] CRAN (R 4.0.2)
##  future                 1.23.0   2021-10-31 [1] CRAN (R 4.0.2)
##  future.apply           1.8.1    2021-08-10 [1] CRAN (R 4.0.2)
##  generics               0.1.2    2022-01-31 [1] CRAN (R 4.0.2)
##  GenomeInfoDb           1.26.7   2021-04-08 [1] Bioconductor
##  GenomeInfoDbData       1.2.4    2022-02-02 [1] Bioconductor
##  GenomicRanges          1.42.0   2020-10-27 [1] Bioconductor
##  ggbeeswarm             0.6.0    2017-08-07 [1] CRAN (R 4.0.2)
##  ggplot2              * 3.3.6    2022-05-03 [1] CRAN (R 4.0.2)
##  ggrastr                1.0.1    2021-12-08 [1] CRAN (R 4.0.2)
##  ggrepel                0.9.1    2021-01-15 [1] CRAN (R 4.0.2)
##  ggridges               0.5.3    2021-01-08 [1] CRAN (R 4.0.2)
##  globals                0.14.0   2020-11-22 [1] CRAN (R 4.0.2)
##  glue                   1.6.1    2022-01-22 [1] CRAN (R 4.0.2)
##  goftest                1.2-3    2021-10-07 [1] CRAN (R 4.0.2)
##  gridExtra              2.3      2017-09-09 [1] CRAN (R 4.0.2)
##  gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.0.2)
##  highr                  0.9      2021-04-16 [1] CRAN (R 4.0.2)
##  hms                    1.1.1    2021-09-26 [1] CRAN (R 4.0.2)
##  htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.0.2)
##  htmlwidgets            1.5.4    2021-09-08 [1] CRAN (R 4.0.2)
##  httpuv                 1.6.5    2022-01-05 [1] CRAN (R 4.0.2)
##  httr                   1.4.2    2020-07-20 [1] CRAN (R 4.0.2)
##  ica                    1.0-2    2018-05-24 [1] CRAN (R 4.0.2)
##  igraph                 1.2.11   2022-01-04 [1] CRAN (R 4.0.2)
##  IRanges              * 2.24.1   2020-12-12 [1] Bioconductor
##  irlba                  2.3.5    2021-12-06 [1] CRAN (R 4.0.2)
##  jquerylib              0.1.4    2021-04-26 [1] CRAN (R 4.0.2)
##  jsonlite               1.7.3    2022-01-17 [1] CRAN (R 4.0.2)
##  KernSmooth             2.23-17  2020-04-26 [2] CRAN (R 4.0.2)
##  knitr                  1.39     2022-04-26 [1] CRAN (R 4.0.2)
##  ks                     1.13.5   2022-04-14 [1] CRAN (R 4.0.2)
##  labeling               0.4.2    2020-10-20 [1] CRAN (R 4.0.2)
##  later                  1.3.0    2021-08-18 [1] CRAN (R 4.0.2)
##  lattice                0.20-41  2020-04-02 [2] CRAN (R 4.0.2)
##  lazyeval               0.2.2    2019-03-15 [1] CRAN (R 4.0.2)
##  leiden                 0.3.9    2021-07-27 [1] CRAN (R 4.0.2)
##  lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.0.2)
##  listenv                0.8.0    2019-12-05 [1] CRAN (R 4.0.2)
##  lmtest                 0.9-39   2021-11-07 [1] CRAN (R 4.0.2)
##  magrittr               2.0.2    2022-01-26 [1] CRAN (R 4.0.2)
##  MASS                   7.3-51.6 2020-04-26 [2] CRAN (R 4.0.2)
##  Matrix                 1.4-0    2021-12-08 [1] CRAN (R 4.0.2)
##  MatrixGenerics         1.2.1    2021-01-30 [1] Bioconductor
##  matrixStats            0.61.0   2021-09-17 [1] CRAN (R 4.0.2)
##  mclust                 5.4.9    2021-12-17 [1] CRAN (R 4.0.2)
##  memoise                2.0.1    2021-11-26 [1] CRAN (R 4.0.2)
##  mgcv                   1.8-31   2019-11-09 [2] CRAN (R 4.0.2)
##  mime                   0.12     2021-09-28 [1] CRAN (R 4.0.2)
##  miniUI                 0.1.1.1  2018-05-18 [1] CRAN (R 4.0.2)
##  munsell                0.5.0    2018-06-12 [1] CRAN (R 4.0.2)
##  mvtnorm                1.1-3    2021-10-08 [1] CRAN (R 4.0.2)
##  Nebulosa             * 1.0.2    2021-03-23 [1] Bioconductor
##  nlme                   3.1-148  2020-05-24 [2] CRAN (R 4.0.2)
##  openssl                1.4.6    2021-12-19 [1] CRAN (R 4.0.2)
##  org.Hs.eg.db         * 3.12.0   2022-02-02 [1] Bioconductor
##  org.Mm.eg.db         * 3.12.0   2022-02-10 [1] Bioconductor
##  parallelly             1.30.0   2021-12-17 [1] CRAN (R 4.0.2)
##  patchwork            * 1.1.1    2020-12-17 [1] CRAN (R 4.0.2)
##  pbapply                1.5-0    2021-09-16 [1] CRAN (R 4.0.2)
##  pillar                 1.7.0    2022-02-01 [1] CRAN (R 4.0.2)
##  pkgbuild               1.3.1    2021-12-20 [1] CRAN (R 4.0.2)
##  pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.0.2)
##  pkgload                1.2.4    2021-11-30 [1] CRAN (R 4.0.2)
##  plotly                 4.10.0   2021-10-09 [1] CRAN (R 4.0.2)
##  plyr                   1.8.6    2020-03-03 [1] CRAN (R 4.0.2)
##  png                    0.1-7    2013-12-03 [1] CRAN (R 4.0.2)
##  polyclip               1.10-0   2019-03-14 [1] CRAN (R 4.0.2)
##  pracma                 2.3.8    2022-03-04 [1] CRAN (R 4.0.2)
##  prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.0.2)
##  processx               3.5.2    2021-04-30 [1] CRAN (R 4.0.2)
##  progress               1.2.2    2019-05-16 [1] CRAN (R 4.0.2)
##  promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.0.2)
##  ps                     1.6.0    2021-02-28 [1] CRAN (R 4.0.2)
##  purrr                  0.3.4    2020-04-17 [1] CRAN (R 4.0.2)
##  R6                     2.5.1    2021-08-19 [1] CRAN (R 4.0.2)
##  RANN                   2.6.1    2019-01-08 [1] CRAN (R 4.0.2)
##  rappdirs               0.3.3    2021-01-31 [1] CRAN (R 4.0.2)
##  RColorBrewer           1.1-2    2014-12-07 [1] CRAN (R 4.0.2)
##  Rcpp                   1.0.8    2022-01-13 [1] CRAN (R 4.0.2)
##  RcppAnnoy              0.0.19   2021-07-30 [1] CRAN (R 4.0.2)
##  RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.0.2)
##  remotes                2.4.2    2021-11-30 [1] CRAN (R 4.0.2)
##  reshape2               1.4.4    2020-04-09 [1] CRAN (R 4.0.2)
##  reticulate             1.24     2022-01-26 [1] CRAN (R 4.0.2)
##  rlang                  1.0.2    2022-03-04 [1] CRAN (R 4.0.2)
##  rmarkdown              2.14     2022-04-25 [1] CRAN (R 4.0.2)
##  ROCR                   1.0-11   2020-05-02 [1] CRAN (R 4.0.2)
##  rpart                  4.1-15   2019-04-12 [2] CRAN (R 4.0.2)
##  rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.0.2)
##  RSQLite                2.2.9    2021-12-06 [1] CRAN (R 4.0.2)
##  rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.0.2)
##  Rtsne                  0.15     2018-11-10 [1] CRAN (R 4.0.2)
##  S4Vectors            * 0.28.1   2020-12-09 [1] Bioconductor
##  sass                   0.4.0    2021-05-12 [1] CRAN (R 4.0.2)
##  scales                 1.1.1    2020-05-11 [1] CRAN (R 4.0.2)
##  scattermore            0.7      2020-11-24 [1] CRAN (R 4.0.2)
##  sctransform            0.3.3    2022-01-13 [1] CRAN (R 4.0.2)
##  sessioninfo            1.2.2    2021-12-06 [1] CRAN (R 4.0.2)
##  Seurat               * 4.1.0    2022-01-14 [1] CRAN (R 4.0.2)
##  SeuratObject         * 4.0.4    2021-11-23 [1] CRAN (R 4.0.2)
##  shiny                  1.7.1    2021-10-02 [1] CRAN (R 4.0.2)
##  SingleCellExperiment   1.12.0   2020-10-27 [1] Bioconductor
##  spatstat.core          2.3-2    2021-11-26 [1] CRAN (R 4.0.2)
##  spatstat.data          2.1-2    2021-12-17 [1] CRAN (R 4.0.2)
##  spatstat.geom          2.3-1    2021-12-10 [1] CRAN (R 4.0.2)
##  spatstat.sparse        2.1-0    2021-12-17 [1] CRAN (R 4.0.2)
##  spatstat.utils         2.3-0    2021-12-12 [1] CRAN (R 4.0.2)
##  stringi                1.7.6    2021-11-29 [1] CRAN (R 4.0.2)
##  stringr                1.4.0    2019-02-10 [1] CRAN (R 4.0.2)
##  SummarizedExperiment   1.20.0   2020-10-27 [1] Bioconductor
##  survival               3.1-12   2020-04-10 [2] CRAN (R 4.0.2)
##  tensor                 1.5      2012-05-05 [1] CRAN (R 4.0.2)
##  testthat               3.1.2    2022-01-20 [1] CRAN (R 4.0.2)
##  tibble                 3.1.6    2021-11-07 [1] CRAN (R 4.0.2)
##  tidyr                  1.2.0    2022-02-01 [1] CRAN (R 4.0.2)
##  tidyselect             1.1.2    2022-02-21 [1] CRAN (R 4.0.2)
##  usethis              * 2.1.5    2021-12-09 [1] CRAN (R 4.0.2)
##  utf8                   1.2.2    2021-07-24 [1] CRAN (R 4.0.2)
##  uwot                   0.1.11   2021-12-02 [1] CRAN (R 4.0.2)
##  vctrs                  0.3.8    2021-04-29 [1] CRAN (R 4.0.2)
##  vipor                  0.4.5    2017-03-22 [1] CRAN (R 4.0.2)
##  viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.0.2)
##  withr                  2.4.3    2021-11-30 [1] CRAN (R 4.0.2)
##  xfun                   0.30     2022-03-02 [1] CRAN (R 4.0.2)
##  XML                    3.99-0.8 2021-09-17 [1] CRAN (R 4.0.2)
##  xml2                   1.3.3    2021-11-30 [1] CRAN (R 4.0.2)
##  xtable                 1.8-4    2019-04-21 [1] CRAN (R 4.0.2)
##  XVector                0.30.0   2020-10-27 [1] Bioconductor
##  yaml                   2.2.2    2022-01-25 [1] CRAN (R 4.0.2)
##  zlibbioc               1.36.0   2020-10-27 [1] Bioconductor
##  zoo                    1.8-9    2021-03-09 [1] CRAN (R 4.0.2)
## 
##  [1] /mnt/nectar_volume/home/eraz0001/R/x86_64-pc-linux-gnu-library/4.0
##  [2] /mnt/nectar_volume/software/apps/R/4.0.2/lib/R/library
## 
## ──────────────────────────────────────────────────────────────────────────────