#El modelo más adecuado es el 1, debido a que al verificar las gráficas, me parece un modelo AR, al cual se le aplican 2 diferenciaciones para obtener un P value menor a 0.05, considero que no es apropiado aplicar otros modelos porque la gráfica tiende a ser bastante clara….
set.seed(300)
timeseries=ts(arima.sim(list(order = c(1,1,2), ma=c(0.32,0.47), ar=0.8), n = 50)+20, start=2010, frequency = 4)
plot(timeseries)
plot(decompose(timeseries))
#H0: La serie tiene raÃces unitarias No es estacionaria > 0.05
#Ha: La serie no tiene raÃces unitarias Es estacionaria < 0.05
adf.test(timeseries)
##
## Augmented Dickey-Fuller Test
##
## data: timeseries
## Dickey-Fuller = -0.58049, Lag order = 3, p-value = 0.975
## alternative hypothesis: stationary
diff_ts<-diff(diff(timeseries))
plot(diff_ts)
plot(decompose(diff_ts))
adf.test(diff_ts)
##
## Augmented Dickey-Fuller Test
##
## data: diff_ts
## Dickey-Fuller = -3.5551, Lag order = 3, p-value = 0.04613
## alternative hypothesis: stationary
acf(timeseries)
pacf(timeseries)
modelo1 = arima(timeseries, order=c(1,2,0))
modelo1$aic
## [1] 153.4622
checkresiduals(modelo1$residuals)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
Box.test(modelo1$residuals, type="Ljung-Box")
##
## Box-Ljung test
##
## data: modelo1$residuals
## X-squared = 0.24269, df = 1, p-value = 0.6223
autoplot(forecast(modelo1))
#El modelo más adecuado es el 1, debido a que al verificar las gráficas, me parece un modelo AR, al cual se le aplican 3 diferenciaciones para obtener un P value menor a 0.05, considero que no es apropiado aplicar otros modelos porque la gráfica tiende a ser bastante clara….
set.seed(400)
timeseries=ts(arima.sim(list(order = c(1,1,2), ma=c(0.32,0.47), ar=0.8), n = 50)+20, start=2010, frequency = 4)
plot(timeseries)
plot(decompose(timeseries))
#H0: La serie tiene raÃces unitarias No es estacionaria > 0.05
#Ha: La serie no tiene raÃces unitarias Es estacionaria < 0.05
adf.test(timeseries)
##
## Augmented Dickey-Fuller Test
##
## data: timeseries
## Dickey-Fuller = -1.9818, Lag order = 3, p-value = 0.5817
## alternative hypothesis: stationary
diff_ts<-diff(diff(diff(timeseries)))
plot(diff_ts)
plot(decompose(diff_ts))
adf.test(diff_ts)
## Warning in adf.test(diff_ts): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff_ts
## Dickey-Fuller = -4.2759, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
acf(timeseries)
pacf(timeseries)
modelo1 = arima(timeseries, order=c(1,3,0))
modelo1$aic
## [1] 137.1494
checkresiduals(modelo1$residuals)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
Box.test(modelo1$residuals, type="Ljung-Box")
##
## Box-Ljung test
##
## data: modelo1$residuals
## X-squared = 0.42557, df = 1, p-value = 0.5142
autoplot(forecast(modelo1))
#El modelo más adecuado es el 1, debido a que al verificar las gráficas, me parece un modelo AR, al cual se le aplican 2 diferenciaciones para obtener un P value menor a 0.05, considero que no es apropiado aplicar otros modelos porque la gráfica tiende a ser bastante clara….
set.seed(500)
timeseries=ts(arima.sim(list(order = c(1,1,2), ma=c(0.32,0.47), ar=0.8), n = 50)+20, start=2010, frequency = 4)
plot(timeseries)
plot(decompose(timeseries))
#H0: La serie tiene raÃces unitarias No es estacionaria > 0.05
#Ha: La serie no tiene raÃces unitarias Es estacionaria < 0.05
adf.test(timeseries)
##
## Augmented Dickey-Fuller Test
##
## data: timeseries
## Dickey-Fuller = -1.0237, Lag order = 3, p-value = 0.926
## alternative hypothesis: stationary
diff_ts<-diff(diff(timeseries))
plot(diff_ts)
plot(decompose(diff_ts))
adf.test(diff_ts)
##
## Augmented Dickey-Fuller Test
##
## data: diff_ts
## Dickey-Fuller = -4.032, Lag order = 3, p-value = 0.01574
## alternative hypothesis: stationary
acf(timeseries)
pacf(timeseries)
modelo1 = arima(timeseries, order=c(1,2,0))
modelo1$aic
## [1] 165.4344
checkresiduals(modelo1$residuals)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
Box.test(modelo1$residuals, type="Ljung-Box")
##
## Box-Ljung test
##
## data: modelo1$residuals
## X-squared = 0.096137, df = 1, p-value = 0.7565
autoplot(forecast(modelo1))