1 Objetivo

Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.

2 Descripción

Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.

Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.

3 Fundamento teórico

Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio [@mendenhall_introduccion_2006].

Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.[@walpole_probabilidad_2012]

Esta distribución, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,

  • La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o

  • El número medio de reparaciones necesarias en 10 kms. de una autopista o,

  • El número promedio de fugas de agua en tubería en un lapso 3 meses.

  • El número de focos promedio que fallan en una cantidad de lote de 1000 focos.

  • El número medio de fugas en 100 kms.de tubería, entre otros [@anderson_estadistica_2008].

3.1 Fórmula

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:

  • \(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).

  • \(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.

  • \(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)

  • \(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).

Propiedades de un evento Poisson:

  • La probabilidad de ocurrencia es la misma para cualquiera de dos intérvalos de la misma longitud.
  • La ocurrencia o no ocurrencia en cualquier intervalo es independiente de la ocurrencia o no ocurrencia en cualquier otro intervalo.

3.2 Esperanza, varianza y desviación estándard

Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:

3.2.1 El valor medio o esperanza\[E(X) = \lambda \]

3.2.2 La varianza\[Var(X) = \sigma^{2} = \lambda\]

3.2.3 La desviación\[\sigma = \sqrt{Var(x)} = \sqrt{\sigma^{2}}\]

El los siguiente ejercicios se hace uso de funciones de distribución para Poisson en R, al igual que otras de las distribuciones de probabilidad, R trae consigo funciones de paquete base que ya permiten calcular la probabilidad, la densidad y la generación de números aleatorios, entre otras.

De igual modo se tienen funciones previamente codificadas que generan los mismos resultados en la dirección: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r

4 Desarrollo

4.1 Cargar librerías

library(ggplot2)

4.2 Cargar funciones

#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r")

4.3 Ejercicios

Se describen ejercicios en donde se encuentra la función de distribución

4.3.1 Llegadas a cajero automático

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.[@anderson_estadistica_2008]

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;

Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.

4.3.1.1 Probabilidad de que lleguen exactamente 5 automóviles en 15 minutos

Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:

Inicializando variables y valores

media <- 10
x <- 5

Utilizando la función creada conforme a la fórmula

prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.0378"

Utilizando la función dpois()

prob2 <- round(dpois(x = 5, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"

4.3.1.2 Tabla de probabilidad y gráfica de la probabilidad de Poisson

options(scipen=999) # Notación normal 
tabla <- data.frame(x=0:25, f.prob.x = round(dpois(x = 0:25, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q=0:25, lambda = media))
tabla
##     x f.prob.x      f.acum.x
## 1   0   0.0000 0.00004539993
## 2   1   0.0005 0.00049939923
## 3   2   0.0023 0.00276939572
## 4   3   0.0076 0.01033605068
## 5   4   0.0189 0.02925268808
## 6   5   0.0378 0.06708596288
## 7   6   0.0631 0.13014142088
## 8   7   0.0901 0.22022064660
## 9   8   0.1126 0.33281967875
## 10  9   0.1251 0.45792971447
## 11 10   0.1251 0.58303975019
## 12 11   0.1137 0.69677614630
## 13 12   0.0948 0.79155647639
## 14 13   0.0729 0.86446442262
## 15 14   0.0521 0.91654152707
## 16 15   0.0347 0.95125959670
## 17 16   0.0217 0.97295839022
## 18 17   0.0128 0.98572238640
## 19 18   0.0071 0.99281349540
## 20 19   0.0037 0.99654565802
## 21 20   0.0019 0.99841173934
## 22 21   0.0009 0.99930034949
## 23 22   0.0004 0.99970426319
## 24 23   0.0002 0.99987987785
## 25 24   0.0001 0.99995305062
## 26 25   0.0000 0.99998231973

4.3.1.3 Visualizando probabilidad de Poisson

ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

4.3.1.4 ¿Cual es la probabilidad de que X sea menor o igual a diez?

\[P(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]

i <- 10
tabla$f.acum[i + 1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.583039750192985"

4.3.1.5 Usando ppois()

ppois() determina la probabilidad acumulada de una distribución Poisson.

prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.583"

4.3.1.6 Media diferente

En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.

Regla de tres:

\[ 10 = 15\] \[ ? = 3\]

Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.

\[ \mu = 2 \]

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]

Entonces ….

media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"

4.3.1.7 El valor de la esperanza media

Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)

4.3.1.8 La varianza

La varianza es igual a \(10\)

4.3.1.9 La desviación estándar

La raiz cuadrada de \(\sqrt{10}\)

sqrt(media)
## [1] 1.414214

4.3.1.10 Interpretación

En este ejercicio se observó la probabilidad de que x número de automóviles llegara en un periodo de 15 minutos, se nos proporciona el promedio de autos el cual es de 10, podemos observar que la mayor probabilidad es que lleguen 9 o 10 automóviles en un periodo de 15 minutos, esto se debe a que contamos con una desviación estándar del 3.16, después se obtuvieron probabilidades de 5 automóviles y para menos de 10 o el propio 10, con esto se cambió la medio de automóviles y se obtuvieron otras probabilidades.

4.3.2 Instalaciones industriales

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí [@walpole_probabilidad_2012].

¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de dias por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.

n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2

La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)

4.3.2.1 La tabla de distribución de probabilidad de Poisson

tabla <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:10, lambda = media))
tabla
##     x f.prob.x  f.acum.x
## 1   0   0.1353 0.1353353
## 2   1   0.2707 0.4060058
## 3   2   0.2707 0.6766764
## 4   3   0.1804 0.8571235
## 5   4   0.0902 0.9473470
## 6   5   0.0361 0.9834364
## 7   6   0.0120 0.9954662
## 8   7   0.0034 0.9989033
## 9   8   0.0009 0.9997626
## 10  9   0.0002 0.9999535
## 11 10   0.0000 0.9999917

4.3.2.2 Visualización de Poisson

ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

4.3.2.3 ¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?

\(P(x=1)\)

Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:

i <- 1
prob <- tabla$f.prob.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es:  0.2707"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es:  0.2707"

4.3.3 ¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?

  • El indice en la taba comienza en cero
i <- 3
prob <- round(tabla$f.acum.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es:  0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es:  0.8571"

4.3.3.1 Interpretación

En este ejercicio se observó las probabilidades de los accidentes en una industria, los cuales ocurren con poca frecuencia, la probabilidad de que ocurra un accidente es de 0.005 y son independientes entre sí. Al realizar la habla de distribución de Poisson con una medida de 2, podemos observar que nuestra probabilidad máxima esta entre 1 y 2 accidentes, ya que tiene una probabilidad del 27.07% de que ocurra, después se obtuvieron las probabilidades para 3 o menos y se observó que la probabilidad es del 85.71%, esto quiere decir que con una gran posibilidad no habrán mas de 3 accidentes.

4.3.4 Fabricante de automóviles

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\) [@walpole_probabilidad_2012].

4.3.4.1 La tabla de distribución cuando media igual a 5

media <- 5
tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))
tabla <- cbind(tabla, f.acum.x = ppois(q = 0:20, lambda = media))
tabla
##     x   f.prob.x    f.acum.x
## 1   0 0.00673795 0.006737947
## 2   1 0.03368973 0.040427682
## 3   2 0.08422434 0.124652019
## 4   3 0.14037390 0.265025915
## 5   4 0.17546737 0.440493285
## 6   5 0.17546737 0.615960655
## 7   6 0.14622281 0.762183463
## 8   7 0.10444486 0.866628326
## 9   8 0.06527804 0.931906365
## 10  9 0.03626558 0.968171943
## 11 10 0.01813279 0.986304731
## 12 11 0.00824218 0.994546908
## 13 12 0.00343424 0.997981148
## 14 13 0.00132086 0.999302010
## 15 14 0.00047174 0.999773746
## 16 15 0.00015725 0.999930992
## 17 16 0.00004914 0.999980131
## 18 17 0.00001445 0.999994584
## 19 18 0.00000401 0.999998598
## 20 19 0.00000106 0.999999655
## 21 20 0.00000026 0.999999919

4.3.4.2 Visualización de Poisson

ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

4.3.4.3 ¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?

\[P(X \leq 3)\]

\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]

i <- 3
prob <- tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5 %"

4.3.4.4 ¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?

\[ 1 - P(X \leq 1) \] \[ 1 - (P(X=0) + P(x=1))\]

i <- 1
prob <- 1 - tabla$f.acum.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"

4.3.4.5 Interpretación

En este ejercico observamos las probabilidades de falla de un freno en unos automóviles de un modelo especifico, para poder obtener las probabilidades se utilizó una media de 5, al obtener la tabla de distribuciones de Poisson observamos que las probabilidades más altas concuerdan con la media, ya que las probabilidades más altas son 4 y 5, con una probabilidad de 17.54%, después en el ejercicio se vieron las probabilidades de que las fallas se presentara en menos de 3 carros o en 3 carros y su probabilidad fue del 26.5%, para terminar se obtuvo la probabilidad de que fuera más de uno, se obtuvo con esto una probabilidad del 95.95% de posibilidades de que un freno falle, siendo esto que es muy probable que un carro presente fallas en un freno.

4.3.5 Declaración de impuestos

Suponga que, en promedio, \(1 \text { persona en }1000\)
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan, encuentre la probabilidad de que \(6, 7 \text { u } 8\) de las formas contengan un error.[@walpole2007]. Ejercicio 5.65, Pág. 165.

\[ P(x=6:8) = P(x=6) + P(x=7) + P(x=8) \]

4.3.5.1 Valores iniciales

prob <- 1 / 1000
media <- prob * 10000

4.3.5.2 Tabla de distriución

tabla <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8), f.acum.x = round(ppois(q = 0:20, lambda = media),8))
tabla
##     x   f.prob.x   f.acum.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174

4.3.5.3 Usando dpois()

\[ P(x \text { de 6 a }8) = P(x=6) + P(x=7) + P(x=8) \]

Se suman las probabilidades

paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es:  26.5734 %"

4.3.5.4 Interpretación

En el ejercicio se describen valores iniciales para la situación donde se supone que de una persona de 1000 tienen algún error numérico en su declaración fiscal y se seleccionan 10,000 formas de manera aleatoria y a partir de aquí se quiere conocer la probabilidad que existe de que en 6, 7, u 8 de las formas exista un error numérico. para conocer este dato se debe hacer una sumatoria de probabilidades y esta se lleva a cabo con la función dpois()dpois() ingresando en el valor de xx cada uno de los valores buscados y sumarlos x=6x=6 su prob. es 0.06310.0631 cuando x=7x=7 la prob. es 0.09010.0901 y cuando x=8x=8 su prob. es 0.11260.1126 y la sumatoria de estas es del 26.5726.57 %.

5 Interpretación

En este caso aprendimos el tema de La distribución de Poisson es una distribución de probabilidad discreta que se aplica a las ocurrencias de algún evento durante un periodo determinado. Es decir, es una distribución de probabilidad discreta en la que solo es necesario conocer los eventos y cuál es su frecuencia media de ocurrencia para poder conocer la probabilidad de que ocurran.

Una distribución es discreta cuando se toma un número de valor finito, mientras que las continuas usan un número infinito de valores.