Common Maclaurin Series
\[1 + X + X^2 + X^3 + X^4 ... = \sum_{n=0}^\infty \ x^n\]
(-1, 1)
The interval is bounded (only works) where x is between -1 and 1.
This function calculates the first 30 terms. Lets call it for \(x=.18\) and compare it with the actual result.
one_over_one_minus_x<-function(x) {
Sn=0
for (i in 0:30) {
Sn<-Sn+x^i
}
return(Sn)
}
x<-.18
one_over_one_minus_x(x)
1/(1-x)## [1] 1.219512
## [1] 1.219512
\[e^x \ = \ 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} \ = \ \sum_{n=0}^\infty \ \frac{x^n}{n!}\]
\((-\infty , \infty)\)
The interval is unbounded. The domain is all real numbers.
This function calculates the first 30 terms. Lets call it for \(x=8\) and compare it with the actual result.
e_to_the_x<-function(x) {
Sn=0
for (i in 0:30) {
num<-x^i
den<-factorial(i)
Sn<-Sn+(num/den)
}
return(Sn)
}
x<-8
e_to_the_x(x)
exp(1)^x## [1] 2980.958
## [1] 2980.958
note:
\[log(x) \ = \ \sum_{n=1}^\infty \ \frac{x^n (-1)^{n-1}}{n}\]
Interval of Convergence\((-1 , 1]\)
The interval is bounded between -1 and 1 (1 works but -1 does not).
This function calculates the first 30 terms. Lets call it for \(x=-0.298653\) and compare it with the actual result.
natural_log<-function(x) {
Sn=0
for (n in 1:30) {
num<-x^n*(-1)^(n-1)
den<-n
Sn<-Sn+(num/den)
}
return(Sn)
}
# x<--0.998653 this requires many many iterations
x<--0.298653
natural_log(x)
log(1+x)## [1] -0.3547525
## [1] -0.3547525