library(tidyverse)
library(openintro)
library(ISLR)
library(glmnet)
library(pls)
library(MASS)

Exercise 2

For parts (a) through (c), indicate which of i. through iv. is correct. Justify your answer.

(a) The lasso, relative to least squares, is: i. More flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance. ii. More flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias. iii. Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance. iv. Less flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.

The answer is iii. Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance. Lasso’s technique allows us to reduce the coefficient estimates.

(b) Repeat (a) for ridge regression relative to least squares.

The answer is iii. Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance. Ridge regression can also reduce coefficient estimates

(c) Repeat (a) for non-linear methods relative to least squares.

The answer is ii. More flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.

Exercise 9

In this exercise, we will predict the number of applications received using the other variables in the College data set.

(a) Split the data set into a training set and a test set.

set.seed(1)
num = sample(nrow(College), 0.75*nrow(College))
train = College[num,]
test = College[-num,]

(b) Fit a linear model using least squares on the training set, and report the test error obtained.

lmfit = lm(Apps~.,data=train)
lmpred = predict(lmfit,test)
lmerr = mean((test$Apps-lmpred)^2)
lmerr
## [1] 1384604
avg.apps=mean(test$Apps)
lm.r2=1-mean((lmpred-test$Apps)^2)/mean((avg.apps-test$Apps)^2)
lm.r2
## [1] 0.9086432

The test error obtained is 1384604.

(c) Fit a ridge regression model on the training set, with λ chosen by cross-validation. Report the test error obtained.

trainc = model.matrix(Apps~.,data=train)[,-1]
testc = model.matrix(Apps~.,data=test)[,-1]
rridge = cv.glmnet(trainc, train$Apps, alpha = 0)
lambda = rridge$lambda.min
rrpred = predict(rridge, s=lambda, newx = testc)
rrerr = mean((test$Apps-rrpred)^2)
rrerr
## [1] 1206346
rr.r2=1-mean((rrpred-test$Apps)^2)/mean((avg.apps-test$Apps)^2)
rr.r2
## [1] 0.9204048

The test error obtained is 1206346.

(d) Fit a lasso model on the training set, with λ chosen by crossvalidation. Report the test error obtained, along with the number of non-zero coefficient estimates.

lass.train = model.matrix(Apps~., data=train)[,-1]
lass.test = model.matrix(Apps~., data=test)[,-1]
lass.fit = cv.glmnet(lass.train, train$Apps, alpha=1)
lambda = lass.fit$lambda.min
lass.pred = predict(lass.fit, s=lambda, newx=lass.test)
lass.err = mean((test$Apps - lass.pred)^2)
lass.err
## [1] 1370403
lass.cof = predict(lass.fit, type="coefficients", s=lambda)[1:ncol(College),]
lass.cof
##   (Intercept)    PrivateYes        Accept        Enroll     Top10perc 
## -5.651833e+02 -4.646154e+02  1.696513e+00 -1.079012e+00  5.131131e+01 
##     Top25perc   F.Undergrad   P.Undergrad      Outstate    Room.Board 
## -1.397974e+01  5.644318e-02  5.646120e-02 -7.818063e-02  1.592739e-01 
##         Books      Personal           PhD      Terminal     S.F.Ratio 
##  2.282606e-01  3.466774e-03 -1.025118e+01  0.000000e+00  1.561720e+01 
##   perc.alumni        Expend     Grad.Rate 
##  1.514189e+00  5.513999e-02  6.157195e+00
lass.r2=1-mean((lass.pred-test$Apps)^2)/mean((avg.apps-test$Apps)^2)
lass.r2
## [1] 0.9095802

We got a test error of 1370403 from using the lasso method.

(e) Fit a PCR model on the training set, with M chosen by crossvalidation. Report the test error obtained, along with the value of M selected by cross-validation.

pcr.fit = pcr(Apps~., data=train, scale=TRUE, validation="CV")
summary(pcr.fit)
## Data:    X dimension: 582 17 
##  Y dimension: 582 1
## Fit method: svdpc
## Number of components considered: 17
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV            3862     3761     2078     2076     1809     1709     1662
## adjCV         3862     3761     2075     2076     1790     1689     1657
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV        1654     1615     1573      1578      1584      1587      1586
## adjCV     1649     1605     1568      1572      1579      1582      1580
##        14 comps  15 comps  16 comps  17 comps
## CV         1588      1528      1193      1133
## adjCV      1583      1511      1183      1124
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X      32.159    57.17    64.41    70.20    75.53    80.48    84.24    87.56
## Apps    5.226    71.83    71.84    80.02    83.01    83.07    83.21    84.46
##       9 comps  10 comps  11 comps  12 comps  13 comps  14 comps  15 comps
## X       90.54     92.81     94.92     96.73     97.81     98.69     99.35
## Apps    85.00     85.22     85.22     85.23     85.36     85.45     89.93
##       16 comps  17 comps
## X        99.82    100.00
## Apps     92.84     93.36
pcr.pred = predict(pcr.fit, test, ncomp=10)  
pcr.err = mean((test$Apps - pcr.pred)^2)
pcr.err
## [1] 1952693
pcr.r2=1-mean((pcr.pred-test$Apps)^2)/mean((avg.apps-test$Apps)^2)
pcr.r2
## [1] 0.8711605

The test error obtained using the PCR is 1952693 and the M selected was 10.

(f) Fit a PLS model on the training set, with M chosen by crossvalidation. Report the test error obtained, along with the value of M selected by cross-validation.

pls.fit = plsr(Apps~., data=train, scale=TRUE, validation="CV")
summary(pls.fit)
## Data:    X dimension: 582 17 
##  Y dimension: 582 1
## Fit method: kernelpls
## Number of components considered: 17
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV            3862     1933     1688     1489     1424     1250     1167
## adjCV         3862     1927     1687     1482     1404     1227     1157
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV        1149     1144     1138      1134      1135      1132      1132
## adjCV     1140     1136     1130      1126      1127      1124      1123
##        14 comps  15 comps  16 comps  17 comps
## CV         1130      1131      1130      1130
## adjCV      1122      1122      1122      1122
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X       25.67    47.09    62.54     65.0    67.54    72.28    76.80    80.63
## Apps    76.80    82.71    87.20     90.8    92.79    93.05    93.14    93.22
##       9 comps  10 comps  11 comps  12 comps  13 comps  14 comps  15 comps
## X       82.71     85.53     88.01     90.95     93.07     95.18     96.86
## Apps    93.30     93.32     93.34     93.35     93.36     93.36     93.36
##       16 comps  17 comps
## X        98.00    100.00
## Apps     93.36     93.36
pls.pred = predict(pls.fit, test, ncomp=9)
pls.err = mean((test$Apps - pls.pred)^2)
pls.err
## [1] 1381335
pls.r2=1-mean((pls.pred-test$Apps)^2)/mean((avg.apps-test$Apps)^2)
pls.r2
## [1] 0.9088589

The test error obtained using the PLS is 1381335 and the M selected was again 9.

(g) Comment on the results obtained. How accurately can we predict the number of college applications received? Is there much difference among the test errors resulting from these five approaches?

Our results from the various models tested, was that the linear model had a test error of 1384604. The ridge regression model had an error of 1206346. The lasso model had an error of 1370403. The PCR model had an error of 1952693. Lastly, the PLS model had an error of 1381335. These results tell us that the ridge regression method is the best model for our data. In order to see if the models can accurately predict the number of applications received, we look at the individual r^2 for each model. All have an r^2 of .87 or higher meaning they can all accurately model the data. Overall, there isn’t that much of a difference between test errors of the 5 tests, but that being said the PCR model had a higher error vs the ridge regression model which had a lower error compared to the others.

Exercise 11

We will now try to predict per capita crime rate in the Boston data set.

(a) Try out some of the regression methods explored in this chapter, such as best subset selection, the lasso, ridge regression, and PCR. Present and discuss results for the approaches that you consider.

set.seed(10)
training = sample(1:nrow(Boston), nrow(Boston)/2)
train = Boston[training,]
test = Boston[-training,]
trainset = model.matrix(crim~., data=train)[,-1]
testset = model.matrix(crim~., data=test)[,-1]

First, I’m performing a lasso regression

lasso.fit = cv.glmnet(trainset, train$crim, alpha=1)
lambda = lasso.fit$lambda.min
lasso.pred = predict(lasso.fit, s=lambda, newx=testset)
lasso.err = mean((test$crim - lasso.pred)^2)
lasso.err
## [1] 56.09141

We are given a test error of 55.95583.

Next, I’m going to perform a PCR

pcr2.fit = pcr(crim~., data=train, scale=TRUE, validation="CV")
summary(pcr2.fit)
## Data:    X dimension: 253 13 
##  Y dimension: 253 1
## Fit method: svdpc
## Number of components considered: 13
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV           7.521    6.136    6.095    5.727    5.626    5.675    5.777
## adjCV        7.521    6.130    6.089    5.717    5.616    5.661    5.759
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV       5.782    5.673    5.552     5.546     5.554     5.542     5.505
## adjCV    5.764    5.649    5.530     5.526     5.536     5.521     5.484
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X       46.57    58.79    68.40    76.02    82.37    87.52    90.99    93.28
## crim    35.21    36.53    45.03    47.18    47.30    47.35    47.35    49.85
##       9 comps  10 comps  11 comps  12 comps  13 comps
## X       95.35     97.13     98.44     99.51    100.00
## crim    51.98     51.99     52.05     52.64     53.51
pcr2.pred = predict(pcr2.fit, test, ncomp=12)  
pcr2.err = mean((test$crim - pcr2.pred)^2)
pcr2.err
## [1] 56.58621

We are given a test error of 56.58621.

Last, I’m going to perform a ridge regression

ridge.fit = cv.glmnet(trainset, train$crim, alpha=0)
lambda = ridge.fit$lambda.min
ridge.pred = predict(ridge.fit, s=lambda, newx=testset)
ridge.err = mean((test$crim - ridge.pred)^2)
ridge.err
## [1] 56.34103

We are given a test error of 56.34103.

(b) Propose a model (or set of models) that seem to perform well on this data set, and justify your answer. Make sure that you are evaluating model performance using validation set error, crossvalidation, or some other reasonable alternative, as opposed to using training error.

As computed in part (A), we are given the test errors given were 55.95583 for the lasso regression, 56.58621 for the PCR model, and 56.34103 for the ridge regression. The lowest test error was the lasso model, so we can propose that this model would perform the best compared to the others. That being said, the other models’ errors didn’t fall far from the lasso model so they can all be said to perform well.

(c) Does your chosen model involve all of the features in the data set? Why or why not?

No, because my chosen model (the lasso model) removes variables deemed “unimportant” or barely significant, and changes their coefficients to 0.

LS0tDQp0aXRsZTogIkFzc2lnbm1lbnQgNSINCmF1dGhvcjogIkhhaWxleSBKZW5zZW4iDQpkYXRlOiAiMy8yMy8yMDIyIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmxpYnJhcnkoSVNMUikNCmxpYnJhcnkoZ2xtbmV0KQ0KbGlicmFyeShwbHMpDQpsaWJyYXJ5KE1BU1MpDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDINCg0KRm9yIHBhcnRzIChhKSB0aHJvdWdoIChjKSwgaW5kaWNhdGUgd2hpY2ggb2YgaS4gdGhyb3VnaCBpdi4gaXMgY29ycmVjdC4NCkp1c3RpZnkgeW91ciBhbnN3ZXIuDQoNCioqKGEpKiogVGhlIGxhc3NvLCByZWxhdGl2ZSB0byBsZWFzdCBzcXVhcmVzLCBpczoNCmkuIE1vcmUgZmxleGlibGUgYW5kIGhlbmNlIHdpbGwgZ2l2ZSBpbXByb3ZlZCBwcmVkaWN0aW9uIGFjY3VyYWN5IHdoZW4gaXRzIGluY3JlYXNlIGluIGJpYXMgaXMgbGVzcyB0aGFuIGl0cyBkZWNyZWFzZSBpbg0KdmFyaWFuY2UuDQppaS4gTW9yZSBmbGV4aWJsZSBhbmQgaGVuY2Ugd2lsbCBnaXZlIGltcHJvdmVkIHByZWRpY3Rpb24gYWNjdXJhY3kgd2hlbiBpdHMgaW5jcmVhc2UgaW4gdmFyaWFuY2UgaXMgbGVzcyB0aGFuIGl0cyBkZWNyZWFzZQ0KaW4gYmlhcy4NCmlpaS4gTGVzcyBmbGV4aWJsZSBhbmQgaGVuY2Ugd2lsbCBnaXZlIGltcHJvdmVkIHByZWRpY3Rpb24gYWNjdXJhY3kgd2hlbiBpdHMgaW5jcmVhc2UgaW4gYmlhcyBpcyBsZXNzIHRoYW4gaXRzIGRlY3JlYXNlIGluDQp2YXJpYW5jZS4NCml2LiBMZXNzIGZsZXhpYmxlIGFuZCBoZW5jZSB3aWxsIGdpdmUgaW1wcm92ZWQgcHJlZGljdGlvbiBhY2N1cmFjeSB3aGVuIGl0cyBpbmNyZWFzZSBpbiB2YXJpYW5jZSBpcyBsZXNzIHRoYW4gaXRzIGRlY3JlYXNlDQppbiBiaWFzLg0KDQpUaGUgYW5zd2VyIGlzIGlpaS4gTGVzcyBmbGV4aWJsZSBhbmQgaGVuY2Ugd2lsbCBnaXZlIGltcHJvdmVkIHByZWRpY3Rpb24gYWNjdXJhY3kgd2hlbiBpdHMgaW5jcmVhc2UgaW4gYmlhcyBpcyBsZXNzIHRoYW4gaXRzIGRlY3JlYXNlIGluDQp2YXJpYW5jZS4gTGFzc28ncyB0ZWNobmlxdWUgYWxsb3dzIHVzIHRvIHJlZHVjZSB0aGUgY29lZmZpY2llbnQgZXN0aW1hdGVzLg0KDQoqKihiKSoqIFJlcGVhdCAoYSkgZm9yIHJpZGdlIHJlZ3Jlc3Npb24gcmVsYXRpdmUgdG8gbGVhc3Qgc3F1YXJlcy4NCg0KVGhlIGFuc3dlciBpcyBpaWkuIExlc3MgZmxleGlibGUgYW5kIGhlbmNlIHdpbGwgZ2l2ZSBpbXByb3ZlZCBwcmVkaWN0aW9uIGFjY3VyYWN5IHdoZW4gaXRzIGluY3JlYXNlIGluIGJpYXMgaXMgbGVzcyB0aGFuIGl0cyBkZWNyZWFzZSBpbg0KdmFyaWFuY2UuIFJpZGdlIHJlZ3Jlc3Npb24gY2FuIGFsc28gcmVkdWNlIGNvZWZmaWNpZW50IGVzdGltYXRlcw0KDQoqKihjKSoqIFJlcGVhdCAoYSkgZm9yIG5vbi1saW5lYXIgbWV0aG9kcyByZWxhdGl2ZSB0byBsZWFzdCBzcXVhcmVzLg0KDQpUaGUgYW5zd2VyIGlzIGlpLiBNb3JlIGZsZXhpYmxlIGFuZCBoZW5jZSB3aWxsIGdpdmUgaW1wcm92ZWQgcHJlZGljdGlvbiBhY2N1cmFjeSB3aGVuIGl0cyBpbmNyZWFzZSBpbiB2YXJpYW5jZSBpcyBsZXNzIHRoYW4gaXRzIGRlY3JlYXNlDQppbiBiaWFzLiANCg0KIyMjIEV4ZXJjaXNlIDkNCg0KSW4gdGhpcyBleGVyY2lzZSwgd2Ugd2lsbCBwcmVkaWN0IHRoZSBudW1iZXIgb2YgYXBwbGljYXRpb25zIHJlY2VpdmVkDQp1c2luZyB0aGUgb3RoZXIgdmFyaWFibGVzIGluIHRoZSBDb2xsZWdlIGRhdGEgc2V0Lg0KDQoqKihhKSoqIFNwbGl0IHRoZSBkYXRhIHNldCBpbnRvIGEgdHJhaW5pbmcgc2V0IGFuZCBhIHRlc3Qgc2V0Lg0KDQpgYGB7cn0NCnNldC5zZWVkKDEpDQpudW0gPSBzYW1wbGUobnJvdyhDb2xsZWdlKSwgMC43NSpucm93KENvbGxlZ2UpKQ0KdHJhaW4gPSBDb2xsZWdlW251bSxdDQp0ZXN0ID0gQ29sbGVnZVstbnVtLF0NCmBgYA0KDQoNCioqKGIpKiogRml0IGEgbGluZWFyIG1vZGVsIHVzaW5nIGxlYXN0IHNxdWFyZXMgb24gdGhlIHRyYWluaW5nIHNldCwgYW5kDQpyZXBvcnQgdGhlIHRlc3QgZXJyb3Igb2J0YWluZWQuDQoNCmBgYHtyfQ0KbG1maXQgPSBsbShBcHBzfi4sZGF0YT10cmFpbikNCmxtcHJlZCA9IHByZWRpY3QobG1maXQsdGVzdCkNCmxtZXJyID0gbWVhbigodGVzdCRBcHBzLWxtcHJlZCleMikNCmxtZXJyDQoNCmF2Zy5hcHBzPW1lYW4odGVzdCRBcHBzKQ0KbG0ucjI9MS1tZWFuKChsbXByZWQtdGVzdCRBcHBzKV4yKS9tZWFuKChhdmcuYXBwcy10ZXN0JEFwcHMpXjIpDQpsbS5yMg0KYGBgDQpUaGUgdGVzdCBlcnJvciBvYnRhaW5lZCBpcyAxMzg0NjA0Lg0KDQoqKihjKSoqIEZpdCBhIHJpZGdlIHJlZ3Jlc3Npb24gbW9kZWwgb24gdGhlIHRyYWluaW5nIHNldCwgd2l0aCDOuyBjaG9zZW4NCmJ5IGNyb3NzLXZhbGlkYXRpb24uIFJlcG9ydCB0aGUgdGVzdCBlcnJvciBvYnRhaW5lZC4NCg0KYGBge3J9DQp0cmFpbmMgPSBtb2RlbC5tYXRyaXgoQXBwc34uLGRhdGE9dHJhaW4pWywtMV0NCnRlc3RjID0gbW9kZWwubWF0cml4KEFwcHN+LixkYXRhPXRlc3QpWywtMV0NCnJyaWRnZSA9IGN2LmdsbW5ldCh0cmFpbmMsIHRyYWluJEFwcHMsIGFscGhhID0gMCkNCmxhbWJkYSA9IHJyaWRnZSRsYW1iZGEubWluDQpycnByZWQgPSBwcmVkaWN0KHJyaWRnZSwgcz1sYW1iZGEsIG5ld3ggPSB0ZXN0YykNCnJyZXJyID0gbWVhbigodGVzdCRBcHBzLXJycHJlZCleMikNCnJyZXJyDQoNCnJyLnIyPTEtbWVhbigocnJwcmVkLXRlc3QkQXBwcyleMikvbWVhbigoYXZnLmFwcHMtdGVzdCRBcHBzKV4yKQ0KcnIucjINCmBgYA0KDQpUaGUgdGVzdCBlcnJvciBvYnRhaW5lZCBpcyAxMjA2MzQ2Lg0KDQoqKihkKSoqIEZpdCBhIGxhc3NvIG1vZGVsIG9uIHRoZSB0cmFpbmluZyBzZXQsIHdpdGggzrsgY2hvc2VuIGJ5IGNyb3NzdmFsaWRhdGlvbi4gUmVwb3J0IHRoZSB0ZXN0IGVycm9yIG9idGFpbmVkLCBhbG9uZyB3aXRoIHRoZSBudW1iZXIgb2Ygbm9uLXplcm8gY29lZmZpY2llbnQgZXN0aW1hdGVzLg0KDQpgYGB7cn0NCmxhc3MudHJhaW4gPSBtb2RlbC5tYXRyaXgoQXBwc34uLCBkYXRhPXRyYWluKVssLTFdDQpsYXNzLnRlc3QgPSBtb2RlbC5tYXRyaXgoQXBwc34uLCBkYXRhPXRlc3QpWywtMV0NCmxhc3MuZml0ID0gY3YuZ2xtbmV0KGxhc3MudHJhaW4sIHRyYWluJEFwcHMsIGFscGhhPTEpDQpsYW1iZGEgPSBsYXNzLmZpdCRsYW1iZGEubWluDQpsYXNzLnByZWQgPSBwcmVkaWN0KGxhc3MuZml0LCBzPWxhbWJkYSwgbmV3eD1sYXNzLnRlc3QpDQpsYXNzLmVyciA9IG1lYW4oKHRlc3QkQXBwcyAtIGxhc3MucHJlZCleMikNCmxhc3MuZXJyDQoNCmxhc3MuY29mID0gcHJlZGljdChsYXNzLmZpdCwgdHlwZT0iY29lZmZpY2llbnRzIiwgcz1sYW1iZGEpWzE6bmNvbChDb2xsZWdlKSxdDQpsYXNzLmNvZg0KDQpsYXNzLnIyPTEtbWVhbigobGFzcy5wcmVkLXRlc3QkQXBwcyleMikvbWVhbigoYXZnLmFwcHMtdGVzdCRBcHBzKV4yKQ0KbGFzcy5yMg0KYGBgDQoNCldlIGdvdCBhIHRlc3QgZXJyb3Igb2YgMTM3MDQwMyBmcm9tIHVzaW5nIHRoZSBsYXNzbyBtZXRob2QuIA0KDQoqKihlKSoqIEZpdCBhIFBDUiBtb2RlbCBvbiB0aGUgdHJhaW5pbmcgc2V0LCB3aXRoIE0gY2hvc2VuIGJ5IGNyb3NzdmFsaWRhdGlvbi4gUmVwb3J0IHRoZSB0ZXN0IGVycm9yIG9idGFpbmVkLCBhbG9uZyB3aXRoIHRoZSB2YWx1ZQ0Kb2YgTSBzZWxlY3RlZCBieSBjcm9zcy12YWxpZGF0aW9uLg0KDQpgYGB7cn0NCnBjci5maXQgPSBwY3IoQXBwc34uLCBkYXRhPXRyYWluLCBzY2FsZT1UUlVFLCB2YWxpZGF0aW9uPSJDViIpDQpzdW1tYXJ5KHBjci5maXQpDQpwY3IucHJlZCA9IHByZWRpY3QocGNyLmZpdCwgdGVzdCwgbmNvbXA9MTApICANCnBjci5lcnIgPSBtZWFuKCh0ZXN0JEFwcHMgLSBwY3IucHJlZCleMikNCnBjci5lcnINCg0KcGNyLnIyPTEtbWVhbigocGNyLnByZWQtdGVzdCRBcHBzKV4yKS9tZWFuKChhdmcuYXBwcy10ZXN0JEFwcHMpXjIpDQpwY3IucjINCmBgYA0KDQpUaGUgdGVzdCBlcnJvciBvYnRhaW5lZCB1c2luZyB0aGUgUENSIGlzIDE5NTI2OTMgYW5kIHRoZSBNIHNlbGVjdGVkIHdhcyAxMC4NCg0KKiooZikqKiBGaXQgYSBQTFMgbW9kZWwgb24gdGhlIHRyYWluaW5nIHNldCwgd2l0aCBNIGNob3NlbiBieSBjcm9zc3ZhbGlkYXRpb24uIFJlcG9ydCB0aGUgdGVzdCBlcnJvciBvYnRhaW5lZCwgYWxvbmcgd2l0aCB0aGUgdmFsdWUNCm9mIE0gc2VsZWN0ZWQgYnkgY3Jvc3MtdmFsaWRhdGlvbi4NCg0KYGBge3J9DQpwbHMuZml0ID0gcGxzcihBcHBzfi4sIGRhdGE9dHJhaW4sIHNjYWxlPVRSVUUsIHZhbGlkYXRpb249IkNWIikNCnN1bW1hcnkocGxzLmZpdCkNCnBscy5wcmVkID0gcHJlZGljdChwbHMuZml0LCB0ZXN0LCBuY29tcD05KQ0KcGxzLmVyciA9IG1lYW4oKHRlc3QkQXBwcyAtIHBscy5wcmVkKV4yKQ0KcGxzLmVycg0KDQpwbHMucjI9MS1tZWFuKChwbHMucHJlZC10ZXN0JEFwcHMpXjIpL21lYW4oKGF2Zy5hcHBzLXRlc3QkQXBwcyleMikNCnBscy5yMg0KYGBgDQoNClRoZSB0ZXN0IGVycm9yIG9idGFpbmVkIHVzaW5nIHRoZSBQTFMgaXMgMTM4MTMzNSBhbmQgdGhlIE0gc2VsZWN0ZWQgd2FzIGFnYWluIDkuDQoNCioqKGcpKiogQ29tbWVudCBvbiB0aGUgcmVzdWx0cyBvYnRhaW5lZC4gSG93IGFjY3VyYXRlbHkgY2FuIHdlIHByZWRpY3QgdGhlIG51bWJlciBvZiBjb2xsZWdlIGFwcGxpY2F0aW9ucyByZWNlaXZlZD8gSXMgdGhlcmUgbXVjaA0KZGlmZmVyZW5jZSBhbW9uZyB0aGUgdGVzdCBlcnJvcnMgcmVzdWx0aW5nIGZyb20gdGhlc2UgZml2ZSBhcHByb2FjaGVzPw0KDQpPdXIgcmVzdWx0cyBmcm9tIHRoZSB2YXJpb3VzIG1vZGVscyB0ZXN0ZWQsIHdhcyB0aGF0IHRoZSBsaW5lYXIgbW9kZWwgaGFkIGEgdGVzdCBlcnJvciBvZiAxMzg0NjA0LiBUaGUgcmlkZ2UgcmVncmVzc2lvbiBtb2RlbCBoYWQgYW4gZXJyb3Igb2YgMTIwNjM0Ni4gVGhlIGxhc3NvIG1vZGVsIGhhZCBhbiBlcnJvciBvZiAxMzcwNDAzLiBUaGUgUENSIG1vZGVsIGhhZCBhbiBlcnJvciBvZiAxOTUyNjkzLiBMYXN0bHksIHRoZSBQTFMgbW9kZWwgaGFkIGFuIGVycm9yIG9mIDEzODEzMzUuIFRoZXNlIHJlc3VsdHMgdGVsbCB1cyB0aGF0IHRoZSByaWRnZSByZWdyZXNzaW9uIG1ldGhvZCBpcyB0aGUgYmVzdCBtb2RlbCBmb3Igb3VyIGRhdGEuIEluIG9yZGVyIHRvIHNlZSBpZiB0aGUgbW9kZWxzIGNhbiBhY2N1cmF0ZWx5IHByZWRpY3QgdGhlIG51bWJlciBvZiBhcHBsaWNhdGlvbnMgcmVjZWl2ZWQsIHdlIGxvb2sgYXQgdGhlIGluZGl2aWR1YWwgcl4yIGZvciBlYWNoIG1vZGVsLiBBbGwgaGF2ZSBhbiByXjIgb2YgLjg3IG9yIGhpZ2hlciBtZWFuaW5nIHRoZXkgY2FuIGFsbCBhY2N1cmF0ZWx5IG1vZGVsIHRoZSBkYXRhLiBPdmVyYWxsLCB0aGVyZSBpc24ndCB0aGF0IG11Y2ggb2YgYSBkaWZmZXJlbmNlIGJldHdlZW4gdGVzdCBlcnJvcnMgb2YgdGhlIDUgdGVzdHMsIGJ1dCB0aGF0IGJlaW5nIHNhaWQgdGhlIFBDUiBtb2RlbCBoYWQgYSBoaWdoZXIgZXJyb3IgdnMgdGhlIHJpZGdlIHJlZ3Jlc3Npb24gbW9kZWwgd2hpY2ggaGFkIGEgbG93ZXIgZXJyb3IgY29tcGFyZWQgdG8gdGhlIG90aGVycy4NCg0KIyMjIEV4ZXJjaXNlIDExDQoNCldlIHdpbGwgbm93IHRyeSB0byBwcmVkaWN0IHBlciBjYXBpdGEgY3JpbWUgcmF0ZSBpbiB0aGUgQm9zdG9uIGRhdGENCnNldC4NCg0KKiooYSkqKiBUcnkgb3V0IHNvbWUgb2YgdGhlIHJlZ3Jlc3Npb24gbWV0aG9kcyBleHBsb3JlZCBpbiB0aGlzIGNoYXB0ZXIsDQpzdWNoIGFzIGJlc3Qgc3Vic2V0IHNlbGVjdGlvbiwgdGhlIGxhc3NvLCByaWRnZSByZWdyZXNzaW9uLCBhbmQNClBDUi4gUHJlc2VudCBhbmQgZGlzY3VzcyByZXN1bHRzIGZvciB0aGUgYXBwcm9hY2hlcyB0aGF0IHlvdQ0KY29uc2lkZXIuDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTApDQp0cmFpbmluZyA9IHNhbXBsZSgxOm5yb3coQm9zdG9uKSwgbnJvdyhCb3N0b24pLzIpDQp0cmFpbiA9IEJvc3Rvblt0cmFpbmluZyxdDQp0ZXN0ID0gQm9zdG9uWy10cmFpbmluZyxdDQp0cmFpbnNldCA9IG1vZGVsLm1hdHJpeChjcmltfi4sIGRhdGE9dHJhaW4pWywtMV0NCnRlc3RzZXQgPSBtb2RlbC5tYXRyaXgoY3JpbX4uLCBkYXRhPXRlc3QpWywtMV0NCmBgYA0KDQpGaXJzdCwgSSdtIHBlcmZvcm1pbmcgYSBsYXNzbyByZWdyZXNzaW9uDQoNCmBgYHtyfQ0KbGFzc28uZml0ID0gY3YuZ2xtbmV0KHRyYWluc2V0LCB0cmFpbiRjcmltLCBhbHBoYT0xKQ0KbGFtYmRhID0gbGFzc28uZml0JGxhbWJkYS5taW4NCmxhc3NvLnByZWQgPSBwcmVkaWN0KGxhc3NvLmZpdCwgcz1sYW1iZGEsIG5ld3g9dGVzdHNldCkNCmxhc3NvLmVyciA9IG1lYW4oKHRlc3QkY3JpbSAtIGxhc3NvLnByZWQpXjIpDQpsYXNzby5lcnINCmBgYA0KV2UgYXJlIGdpdmVuIGEgdGVzdCBlcnJvciBvZiA1NS45NTU4My4NCg0KTmV4dCwgSSdtIGdvaW5nIHRvIHBlcmZvcm0gYSBQQ1INCg0KYGBge3J9DQpwY3IyLmZpdCA9IHBjcihjcmltfi4sIGRhdGE9dHJhaW4sIHNjYWxlPVRSVUUsIHZhbGlkYXRpb249IkNWIikNCnN1bW1hcnkocGNyMi5maXQpDQpwY3IyLnByZWQgPSBwcmVkaWN0KHBjcjIuZml0LCB0ZXN0LCBuY29tcD0xMikgIA0KcGNyMi5lcnIgPSBtZWFuKCh0ZXN0JGNyaW0gLSBwY3IyLnByZWQpXjIpDQpwY3IyLmVycg0KYGBgDQoNCldlIGFyZSBnaXZlbiBhIHRlc3QgZXJyb3Igb2YgNTYuNTg2MjEuDQoNCkxhc3QsIEknbSBnb2luZyB0byBwZXJmb3JtIGEgcmlkZ2UgcmVncmVzc2lvbiANCg0KYGBge3J9DQpyaWRnZS5maXQgPSBjdi5nbG1uZXQodHJhaW5zZXQsIHRyYWluJGNyaW0sIGFscGhhPTApDQpsYW1iZGEgPSByaWRnZS5maXQkbGFtYmRhLm1pbg0KcmlkZ2UucHJlZCA9IHByZWRpY3QocmlkZ2UuZml0LCBzPWxhbWJkYSwgbmV3eD10ZXN0c2V0KQ0KcmlkZ2UuZXJyID0gbWVhbigodGVzdCRjcmltIC0gcmlkZ2UucHJlZCleMikNCnJpZGdlLmVycg0KYGBgDQoNCldlIGFyZSBnaXZlbiBhIHRlc3QgZXJyb3Igb2YgNTYuMzQxMDMuDQoNCioqKGIpKiogUHJvcG9zZSBhIG1vZGVsIChvciBzZXQgb2YgbW9kZWxzKSB0aGF0IHNlZW0gdG8gcGVyZm9ybSB3ZWxsIG9uDQp0aGlzIGRhdGEgc2V0LCBhbmQganVzdGlmeSB5b3VyIGFuc3dlci4gTWFrZSBzdXJlIHRoYXQgeW91IGFyZQ0KZXZhbHVhdGluZyBtb2RlbCBwZXJmb3JtYW5jZSB1c2luZyB2YWxpZGF0aW9uIHNldCBlcnJvciwgY3Jvc3N2YWxpZGF0aW9uLCBvciBzb21lIG90aGVyIHJlYXNvbmFibGUgYWx0ZXJuYXRpdmUsIGFzIG9wcG9zZWQgdG8NCnVzaW5nIHRyYWluaW5nIGVycm9yLg0KDQpBcyBjb21wdXRlZCBpbiBwYXJ0IChBKSwgd2UgYXJlIGdpdmVuIHRoZSB0ZXN0IGVycm9ycyBnaXZlbiB3ZXJlIDU1Ljk1NTgzIGZvciB0aGUgbGFzc28gcmVncmVzc2lvbiwgNTYuNTg2MjEgZm9yIHRoZSBQQ1IgbW9kZWwsIGFuZCA1Ni4zNDEwMyBmb3IgdGhlIHJpZGdlIHJlZ3Jlc3Npb24uIFRoZSBsb3dlc3QgdGVzdCBlcnJvciB3YXMgdGhlIGxhc3NvIG1vZGVsLCBzbyB3ZSBjYW4gcHJvcG9zZSB0aGF0IHRoaXMgbW9kZWwgd291bGQgcGVyZm9ybSB0aGUgYmVzdCBjb21wYXJlZCB0byB0aGUgb3RoZXJzLiBUaGF0IGJlaW5nIHNhaWQsIHRoZSBvdGhlciBtb2RlbHMnIGVycm9ycyBkaWRuJ3QgZmFsbCBmYXIgZnJvbSB0aGUgbGFzc28gbW9kZWwgc28gdGhleSBjYW4gYWxsIGJlIHNhaWQgdG8gcGVyZm9ybSB3ZWxsLg0KDQoqKihjKSoqIERvZXMgeW91ciBjaG9zZW4gbW9kZWwgaW52b2x2ZSBhbGwgb2YgdGhlIGZlYXR1cmVzIGluIHRoZSBkYXRhDQpzZXQ/IFdoeSBvciB3aHkgbm90Pw0KDQpObywgYmVjYXVzZSBteSBjaG9zZW4gbW9kZWwgKHRoZSBsYXNzbyBtb2RlbCkgcmVtb3ZlcyB2YXJpYWJsZXMgZGVlbWVkICJ1bmltcG9ydGFudCIgb3IgYmFyZWx5IHNpZ25pZmljYW50LCBhbmQgY2hhbmdlcyB0aGVpciBjb2VmZmljaWVudHMgdG8gMC4gDQoNCi4uLg0KDQo=