# A tibble: 78 x 14
report_date soldiers planes helicopters tanks artillery_pieces
<date> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2022-02-23 0 0 0 0 0
2 2022-02-26 3500 14 8 102 15
3 2022-02-27 4300 27 26 146 49
4 2022-02-28 5300 29 29 191 74
5 2022-03-01 5710 29 29 198 77
6 2022-03-02 5840 30 31 211 85
7 2022-03-03 9000 30 31 217 90
8 2022-03-04 9166 33 37 251 105
9 2022-03-05 10000 39 40 269 105
10 2022-03-06 11000 44 48 285 109
# ... with 68 more rows, and 8 more variables:
# armoured_personel_carriers <dbl>, mlrs <dbl>, boats <dbl>, vehicles <dbl>,
# fuel_tankers <dbl>, uav <dbl>, aa_systems <dbl>, cruise_missiles <dbl>
Ukraine War: Russian Losses Timeline
Import
Data sourced from the Kyiv Independent Twitter feed who sourced it from the Ukrainian Defense Ministry.
These are imperfect estimates, given during chaotic wartime conditions, from an institution that is would be incentivised to inflate its figures. This isn’t to say that the Defense Ministry is consciously inflating them, but it bears remembering when looking at this data.
Rates
First we need to apply interpolation in case there were any missed days, linear is fine.
[1] "2022-02-23" "2022-02-24" "2022-02-25" "2022-02-26" "2022-02-27"
[6] "2022-02-28" "2022-03-01" "2022-03-02" "2022-03-03" "2022-03-04"
[11] "2022-03-05" "2022-03-06" "2022-03-07" "2022-03-08" "2022-03-09"
[16] "2022-03-10" "2022-03-11" "2022-03-12" "2022-03-13" "2022-03-14"
[21] "2022-03-15" "2022-03-16" "2022-03-17" "2022-03-18" "2022-03-19"
[26] "2022-03-20" "2022-03-21" "2022-03-22" "2022-03-23" "2022-03-24"
[31] "2022-03-25" "2022-03-26" "2022-03-27" "2022-03-28" "2022-03-29"
[36] "2022-03-30" "2022-03-31" "2022-04-01" "2022-04-02" "2022-04-03"
[41] "2022-04-04" "2022-04-05" "2022-04-06" "2022-04-07" "2022-04-08"
[46] "2022-04-09" "2022-04-10" "2022-04-11" "2022-04-12" "2022-04-13"
[51] "2022-04-14" "2022-04-15" "2022-04-16" "2022-04-17" "2022-04-18"
[56] "2022-04-19" "2022-04-20" "2022-04-21" "2022-04-22" "2022-04-23"
[61] "2022-04-24" "2022-04-25" "2022-04-26" "2022-04-27" "2022-04-28"
[66] "2022-04-29" "2022-04-30" "2022-05-01" "2022-05-02" "2022-05-03"
[71] "2022-05-04" "2022-05-05" "2022-05-06" "2022-05-07" "2022-05-08"
[76] "2022-05-09" "2022-05-10" "2022-05-11" "2022-05-12" "2022-05-13"
[81] "2022-05-14" "2022-05-15" "2022-05-16" "2022-05-17" "2022-05-18"
[86] "2022-05-19" "2022-05-20" "2022-05-21"
Now let’s calculate rates…
# A tibble: 5 x 3
report_date soldiers tanks
<date> <dbl> <dbl>
1 2022-02-24 1167 34
2 2022-02-25 1166 34
3 2022-02-26 1167 34
4 2022-02-27 800 44
5 2022-02-28 1000 45
Important Events
# A tibble: 1 x 5
report_date event_name event_category event_location source
<date> <chr> <chr> <chr> <chr>
1 2022-04-03 Moskva Sinking naval Black Sea <NA>