Data splitting

library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(kernlab)
data(spam)
inTrain<- createDataPartition(y=spam$type,p=0.75,list=FALSE) #Split the 75% of the data, the type column,  in a matrix 
training<- spam[inTrain,] #Training data, 75%
testing<- spam[-inTrain,] #Testing data, 25%
dim(training)
## [1] 3451   58

Fit a model

set.seed(32343)
library(e1071)
modelFit<- train(type~.,data=training,method="glm")
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
modelFit
## Generalized Linear Model 
## 
## 3451 samples
##   57 predictor
##    2 classes: 'nonspam', 'spam' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## 
## Summary of sample sizes: 3451, 3451, 3451, 3451, 3451, 3451, ... 
## 
## Resampling results
## 
##   Accuracy  Kappa      Accuracy SD  Kappa SD  
##   0.921164  0.8339177  0.00601738   0.01288323
## 
## 
summary(modelFit)
## 
## Call:
## NULL
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.9566  -0.1988   0.0000   0.1242   4.9092  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -1.579e+00  1.619e-01  -9.752  < 2e-16 ***
## make              -3.598e-01  2.671e-01  -1.347 0.177926    
## address           -1.257e-01  7.184e-02  -1.750 0.080188 .  
## all                9.836e-02  1.255e-01   0.784 0.433080    
## num3d              2.280e+00  1.431e+00   1.594 0.111042    
## our                6.673e-01  1.286e-01   5.188 2.13e-07 ***
## over               1.027e+00  3.189e-01   3.220 0.001281 ** 
## remove             1.756e+00  3.186e-01   5.512 3.56e-08 ***
## internet           4.674e-01  1.817e-01   2.573 0.010088 *  
## order              5.998e-01  3.163e-01   1.897 0.057881 .  
## mail               1.460e-01  8.301e-02   1.758 0.078667 .  
## receive           -5.669e-01  3.307e-01  -1.714 0.086461 .  
## will              -8.716e-02  8.366e-02  -1.042 0.297504    
## people            -1.024e-01  2.559e-01  -0.400 0.689139    
## report             1.806e-01  1.489e-01   1.213 0.225296    
## addresses          9.648e-01  7.649e-01   1.261 0.207177    
## free               1.026e+00  1.623e-01   6.324 2.55e-10 ***
## business           8.192e-01  2.470e-01   3.317 0.000910 ***
## email              1.014e-01  1.317e-01   0.770 0.441338    
## you                8.846e-02  3.956e-02   2.236 0.025332 *  
## credit             7.439e-01  4.795e-01   1.552 0.120762    
## your               3.293e-01  6.558e-02   5.022 5.11e-07 ***
## font               2.349e-01  1.754e-01   1.339 0.180593    
## num000             2.402e+00  5.530e-01   4.344 1.40e-05 ***
## money              3.278e-01  1.560e-01   2.101 0.035684 *  
## hp                -1.754e+00  3.173e-01  -5.528 3.23e-08 ***
## hpl               -1.236e+00  5.110e-01  -2.419 0.015580 *  
## george            -9.891e+00  2.033e+00  -4.865 1.14e-06 ***
## num650             4.305e-01  1.882e-01   2.287 0.022192 *  
## lab               -4.176e+00  2.612e+00  -1.599 0.109904    
## labs              -7.129e-02  3.754e-01  -0.190 0.849378    
## telnet            -5.234e+00  2.560e+00  -2.044 0.040913 *  
## num857             4.419e+00  3.487e+00   1.267 0.205131    
## data              -9.214e-01  3.886e-01  -2.371 0.017724 *  
## num415             6.881e-01  1.565e+00   0.440 0.660091    
## num85             -2.235e+00  8.335e-01  -2.681 0.007336 ** 
## technology         9.247e-01  3.659e-01   2.527 0.011506 *  
## num1999            3.520e-02  1.966e-01   0.179 0.857875    
## parts             -5.715e-01  4.067e-01  -1.405 0.160012    
## pm                -8.840e-01  4.172e-01  -2.119 0.034105 *  
## direct             1.324e+00  1.220e+00   1.085 0.277884    
## cs                -4.129e+01  3.304e+01  -1.250 0.211441    
## meeting           -2.360e+00  8.576e-01  -2.752 0.005923 ** 
## original          -1.018e+00  8.440e-01  -1.206 0.227827    
## project           -1.208e+00  5.303e-01  -2.278 0.022741 *  
## re                -7.891e-01  1.635e-01  -4.825 1.40e-06 ***
## edu               -1.634e+00  3.342e-01  -4.890 1.01e-06 ***
## table             -1.571e+00  2.264e+00  -0.694 0.487763    
## conference        -4.427e+00  2.002e+00  -2.212 0.026995 *  
## charSemicolon     -1.387e+00  5.058e-01  -2.741 0.006117 ** 
## charRoundbracket  -5.144e-01  3.932e-01  -1.308 0.190750    
## charSquarebracket -1.533e+00  1.797e+00  -0.853 0.393829    
## charExclamation    2.301e-01  6.131e-02   3.753 0.000175 ***
## charDollar         5.087e+00  7.571e-01   6.718 1.84e-11 ***
## charHash           2.649e+00  8.989e-01   2.947 0.003208 ** 
## capitalAve         6.771e-03  1.950e-02   0.347 0.728385    
## capitalLong        7.335e-03  2.771e-03   2.647 0.008129 ** 
## capitalTotal       1.174e-03  2.568e-04   4.571 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4628.1  on 3450  degrees of freedom
## Residual deviance: 1366.4  on 3393  degrees of freedom
## AIC: 1482.4
## 
## Number of Fisher Scoring iterations: 13

Final model

modelFit<- train(type~.,data=training,method="glm")
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
modelFit$finalModel
## 
## Call:  NULL
## 
## Coefficients:
##       (Intercept)               make            address  
##         -1.579104          -0.359826          -0.125683  
##               all              num3d                our  
##          0.098357           2.279740           0.667319  
##              over             remove           internet  
##          1.026864           1.756243           0.467408  
##             order               mail            receive  
##          0.599819           0.145971          -0.566864  
##              will             people             report  
##         -0.087158          -0.102352           0.180577  
##         addresses               free           business  
##          0.964799           1.026374           0.819168  
##             email                you             credit  
##          0.101436           0.088458           0.743928  
##              your               font             num000  
##          0.329343           0.234893           2.402310  
##             money                 hp                hpl  
##          0.327769          -1.753944          -1.235949  
##            george             num650                lab  
##         -9.891090           0.430453          -4.176326  
##              labs             telnet             num857  
##         -0.071294          -5.233978           4.418629  
##              data             num415              num85  
##         -0.921409           0.688109          -2.234776  
##        technology            num1999              parts  
##          0.924736           0.035201          -0.571491  
##                pm             direct                 cs  
##         -0.883972           1.323550         -41.289004  
##           meeting           original            project  
##         -2.360067          -1.017857          -1.207804  
##                re                edu              table  
##         -0.789071          -1.634148          -1.570612  
##        conference      charSemicolon   charRoundbracket  
##         -4.426681          -1.386503          -0.514393  
## charSquarebracket    charExclamation         charDollar  
##         -1.532533           0.230127           5.086500  
##          charHash         capitalAve        capitalLong  
##          2.648971           0.006771           0.007335  
##      capitalTotal  
##          0.001174  
## 
## Degrees of Freedom: 3450 Total (i.e. Null);  3393 Residual
## Null Deviance:       4628 
## Residual Deviance: 1366  AIC: 1482

Prediction

predictions<- predict(modelFit,newdata=testing) #Use the newdata to test
predictions
##    [1] spam    spam    spam    spam    spam    spam    nonspam nonspam
##    [9] nonspam spam    nonspam spam    spam    spam    spam    nonspam
##   [17] spam    spam    spam    nonspam spam    spam    spam    nonspam
##   [25] nonspam spam    spam    spam    spam    spam    spam    spam   
##   [33] nonspam spam    spam    spam    spam    spam    spam    nonspam
##   [41] spam    spam    spam    spam    spam    spam    spam    spam   
##   [49] spam    nonspam spam    spam    spam    spam    spam    spam   
##   [57] spam    spam    spam    spam    spam    spam    spam    spam   
##   [65] nonspam nonspam spam    spam    spam    nonspam spam    spam   
##   [73] nonspam nonspam nonspam spam    spam    spam    spam    spam   
##   [81] spam    spam    spam    spam    spam    spam    nonspam spam   
##   [89] spam    spam    spam    nonspam spam    spam    spam    nonspam
##   [97] spam    spam    spam    spam    spam    spam    spam    spam   
##  [105] spam    spam    spam    spam    spam    spam    nonspam spam   
##  [113] spam    nonspam spam    spam    spam    spam    nonspam spam   
##  [121] spam    spam    nonspam spam    spam    spam    spam    spam   
##  [129] spam    spam    spam    nonspam spam    spam    spam    spam   
##  [137] spam    spam    spam    spam    spam    spam    spam    spam   
##  [145] spam    spam    spam    spam    spam    spam    spam    spam   
##  [153] spam    spam    nonspam nonspam spam    spam    spam    spam   
##  [161] spam    spam    spam    spam    spam    spam    spam    spam   
##  [169] spam    spam    nonspam spam    spam    spam    spam    spam   
##  [177] spam    spam    spam    spam    spam    spam    nonspam spam   
##  [185] spam    spam    spam    spam    spam    spam    spam    spam   
##  [193] spam    spam    spam    spam    spam    spam    nonspam spam   
##  [201] spam    spam    spam    spam    spam    spam    spam    spam   
##  [209] spam    spam    spam    nonspam spam    spam    spam    nonspam
##  [217] nonspam spam    spam    spam    spam    spam    spam    spam   
##  [225] spam    spam    spam    spam    spam    spam    spam    nonspam
##  [233] spam    spam    spam    spam    spam    nonspam spam    spam   
##  [241] spam    spam    spam    spam    spam    spam    spam    spam   
##  [249] spam    spam    spam    spam    spam    spam    spam    spam   
##  [257] spam    spam    spam    spam    spam    spam    nonspam spam   
##  [265] spam    spam    spam    spam    spam    spam    spam    spam   
##  [273] spam    spam    spam    spam    spam    spam    spam    spam   
##  [281] spam    spam    spam    spam    spam    spam    spam    spam   
##  [289] spam    spam    spam    spam    spam    spam    spam    spam   
##  [297] spam    spam    spam    spam    nonspam spam    spam    spam   
##  [305] spam    spam    spam    spam    spam    spam    spam    nonspam
##  [313] spam    spam    nonspam spam    spam    spam    spam    spam   
##  [321] spam    spam    spam    spam    spam    spam    spam    spam   
##  [329] nonspam spam    spam    spam    spam    spam    nonspam spam   
##  [337] spam    spam    nonspam spam    spam    spam    spam    spam   
##  [345] spam    spam    spam    spam    spam    nonspam spam    spam   
##  [353] spam    spam    spam    spam    spam    spam    spam    spam   
##  [361] spam    spam    spam    spam    spam    spam    nonspam spam   
##  [369] spam    spam    spam    spam    spam    nonspam spam    spam   
##  [377] spam    spam    spam    spam    spam    spam    spam    spam   
##  [385] spam    spam    spam    spam    spam    spam    spam    nonspam
##  [393] spam    spam    spam    spam    spam    spam    spam    spam   
##  [401] spam    spam    spam    spam    spam    spam    spam    spam   
##  [409] spam    spam    spam    spam    nonspam nonspam spam    spam   
##  [417] nonspam spam    spam    nonspam spam    spam    nonspam spam   
##  [425] nonspam spam    spam    nonspam spam    spam    spam    nonspam
##  [433] spam    spam    spam    spam    spam    spam    spam    spam   
##  [441] spam    spam    nonspam spam    spam    spam    spam    spam   
##  [449] spam    spam    spam    spam    spam    spam    nonspam nonspam
##  [457] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [465] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [473] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [481] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [489] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [497] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [505] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [513] nonspam nonspam nonspam nonspam nonspam nonspam nonspam spam   
##  [521] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [529] nonspam nonspam nonspam spam    nonspam nonspam nonspam nonspam
##  [537] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [545] nonspam nonspam nonspam nonspam spam    nonspam nonspam nonspam
##  [553] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [561] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [569] nonspam nonspam nonspam nonspam nonspam nonspam nonspam spam   
##  [577] nonspam nonspam spam    nonspam nonspam nonspam nonspam nonspam
##  [585] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [593] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [601] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [609] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [617] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [625] nonspam nonspam nonspam spam    nonspam spam    spam    nonspam
##  [633] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [641] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [649] nonspam nonspam spam    nonspam nonspam nonspam nonspam spam   
##  [657] nonspam nonspam nonspam nonspam nonspam nonspam nonspam spam   
##  [665] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [673] nonspam nonspam nonspam nonspam nonspam spam    nonspam nonspam
##  [681] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [689] spam    nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [697] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [705] nonspam nonspam nonspam nonspam nonspam spam    spam    nonspam
##  [713] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [721] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [729] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [737] nonspam nonspam nonspam nonspam nonspam nonspam spam    nonspam
##  [745] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [753] nonspam nonspam nonspam spam    nonspam spam    nonspam nonspam
##  [761] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [769] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [777] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [785] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [793] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [801] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [809] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [817] nonspam spam    spam    nonspam nonspam nonspam spam    spam   
##  [825] nonspam spam    nonspam nonspam nonspam nonspam nonspam nonspam
##  [833] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [841] nonspam nonspam nonspam spam    nonspam nonspam nonspam nonspam
##  [849] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [857] nonspam nonspam nonspam nonspam nonspam nonspam spam    nonspam
##  [865] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [873] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [881] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [889] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [897] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [905] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [913] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [921] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [929] nonspam nonspam nonspam nonspam nonspam nonspam nonspam spam   
##  [937] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [945] nonspam nonspam spam    nonspam nonspam nonspam nonspam nonspam
##  [953] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [961] nonspam nonspam spam    nonspam nonspam nonspam nonspam nonspam
##  [969] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [977] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [985] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
##  [993] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1001] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1009] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1017] nonspam nonspam nonspam nonspam nonspam spam    nonspam nonspam
## [1025] nonspam spam    nonspam nonspam nonspam nonspam nonspam nonspam
## [1033] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1041] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1049] nonspam nonspam nonspam nonspam spam    nonspam nonspam nonspam
## [1057] nonspam nonspam nonspam nonspam spam    nonspam nonspam nonspam
## [1065] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1073] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1081] nonspam nonspam spam    nonspam nonspam nonspam nonspam nonspam
## [1089] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1097] spam    nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1105] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1113] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1121] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1129] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1137] nonspam nonspam nonspam nonspam nonspam nonspam nonspam nonspam
## [1145] nonspam nonspam nonspam nonspam nonspam nonspam
## Levels: nonspam spam

Confusion Matrix-Evaluate the Final Model

confusionMatrix(predictions,testing$type)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction nonspam spam
##    nonspam     662   55
##    spam         35  398
##                                           
##                Accuracy : 0.9217          
##                  95% CI : (0.9047, 0.9366)
##     No Information Rate : 0.6061          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8348          
##  Mcnemar's Test P-Value : 0.0452          
##                                           
##             Sensitivity : 0.9498          
##             Specificity : 0.8786          
##          Pos Pred Value : 0.9233          
##          Neg Pred Value : 0.9192          
##              Prevalence : 0.6061          
##          Detection Rate : 0.5757          
##    Detection Prevalence : 0.6235          
##       Balanced Accuracy : 0.9142          
##                                           
##        'Positive' Class : nonspam         
##