First lets load our packages
library(quantmod)
library(tidyquant) # To download the data
library(plotly) # To create interactive charts
library(timetk) # To manipulate the data series
library(tidyr)
library(ggplot2)
library(forcats)
Next lets select a few stocks to build our portfolios.
We will choose the following 4 stocks
Lets download the price data.
tick <- c('AMZN', 'AAPL', 'NFLX', 'T')
price_data = tq_get(tick,
from = '2014-01-01',
to = '2022-03-31',
get = 'stock.prices',
complete_cases=T)
Next we will calculate the daily returns for these stocks. We will use the logarithmic returns.
log_ret_tidy <- price_data %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = 'daily',
col_rename = 'ret',
type = 'log')
As you can see that this data is in tidy format. We will use the spread() function to convert it to a wide format. And we will also convert it into a time series object using xts() function.
log_ret_xts <- log_ret_tidy %>%
spread(symbol, value = ret) %>%
tk_xts()
Next letโs calculate the mean daily returns for each asset. Calculate the covariance matrix for all these stocks. We will annualize it by multiplying by 252.
mean_ret <- colMeans(log_ret_xts)
print(round(mean_ret, 4))
cov_mat <- cov(log_ret_xts) * 252
print(round(cov_mat,4))
To calculate the portfolio returns and risk (standard deviation) we will us need
# Calculate the random weights
wts <- runif(n = length(tick))
wts <- wts/sum(wts)
print(wts)
# Calculate the portfolio returns
port_returns <- (sum(wts * mean_ret) + 1)^252 - 1
# Calculate the portfolio risk
port_risk <- sqrt(t(wts) %*% (cov_mat %*% wts))
# Calculate the Sharpe Ratio
sharpe_ratio <- port_returns/port_risk
We have everything we need to perform our optimization. All we need now is to run this code on 5000 random portfolios. For that we will use a for loop.
Before we do that, we need to create empty vectors and matrix for storing our values.
# Creating a matrix to store the weights
num_port <- 10000
all_wts <- matrix(nrow = num_port,
ncol = length(tick))
# Creating an empty vector to store
# Portfolio returns
port_returns <- vector('numeric', length = num_port)
# Creating an empty vector to store
# Portfolio Standard deviation
port_risk <- vector('numeric', length = num_port)
# Creating an empty vector to store
# Portfolio Sharpe Ratio
sharpe_ratio <- vector('numeric', length = num_port)
Next lets run the for loop 5000 times.
for (i in seq_along(port_returns)) {
wts <- runif(length(tick))
wts <- wts/sum(wts)
# Storing weight in the matrix
all_wts[i,] <- wts
# Portfolio returns
port_ret <- sum(wts * mean_ret)
port_ret <- ((port_ret + 1)^252) - 1
# Storing Portfolio Returns values
port_returns[i] <- port_ret
# Creating and storing portfolio risk
port_sd <- sqrt(t(wts) %*% (cov_mat %*% wts))
port_risk[i] <- port_sd
# Creating and storing Portfolio Sharpe Ratios
# Assuming 0% Risk free rate
sr <- port_ret/port_sd
sharpe_ratio[i] <- sr
}
All the heavy lifting has been done and now we can create a data table to store all the values together.
# Storing the values in the table
portfolio_values <- tibble(Return = port_returns,
Risk = port_risk,
SharpeRatio = sharpe_ratio)
# Converting matrix to a tibble and changing column names
all_wts <- tk_tbl(all_wts)
colnames(all_wts) <- colnames(log_ret_xts)
# Combing all the values together
portfolio_values <- tk_tbl(cbind(all_wts, portfolio_values))
We have the weights in each asset with the risk and returns along with the Sharpe ratio of each portfolio.
Next lets look at the portfolios that matter the most.
min_var <- portfolio_values[which.min(portfolio_values$Risk),]
max_sr <- portfolio_values[which.max(portfolio_values$SharpeRatio),]
Plot the weights of each portfolio. First with the minimum variance portfolio.
p <- min_var %>%
gather(AAPL:T, key = Asset,
value = Weights) %>%
mutate(Asset = as.factor(Asset)) %>%
ggplot(aes(x = fct_reorder(Asset,Weights), y = Weights, fill = Asset)) +
geom_bar(stat = 'identity') +
theme_minimal() +
labs(x = 'Assets', y = 'Weights', title = "Minimum Variance Portfolio Weights") +
scale_y_continuous(labels = scales::percent)
ggplotly(p)
Next lets look at the tangency portfolio or the the portfolio with the highest sharpe ratio.
p <- max_sr %>%
gather(AAPL:T, key = Asset,
value = Weights) %>%
mutate(Asset = as.factor(Asset)) %>%
ggplot(aes(x = fct_reorder(Asset,Weights), y = Weights, fill = Asset)) +
geom_bar(stat = 'identity') +
theme_minimal() +
labs(x = 'Assets', y = 'Weights', title = "Tangency Portfolio Weights") +
scale_y_continuous(labels = scales::percent)
ggplotly(p)
Finally lets plot all the random portfolios and visualize the efficient frontier.
p <- portfolio_values %>%
ggplot(aes(x = Risk, y = Return, color = SharpeRatio)) +
geom_point() +
theme_classic() +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(labels = scales::percent) +
labs(x = 'Annualized Risk',
y = 'Annualized Returns',
title = "Portfolio Optimization & Efficient Frontier") +
geom_point(aes(x = Risk,
y = Return), data = min_var, color = 'red') +
geom_point(aes(x = Risk,
y = Return), data = max_sr, color = 'red') +
annotate('text', x = 0.20, y = 0.42, label = "Tangency Portfolio") +
annotate('text', x = 0.18, y = 0.01, label = "Minimum variance portfolio") +
annotate(geom = 'segment', x = 0.14, xend = 0.135, y = 0.01,
yend = 0.06, color = 'red', arrow = arrow(type = "open")) +
annotate(geom = 'segment', x = 0.22, xend = 0.2275, y = 0.405,
yend = 0.365, color = 'red', arrow = arrow(type = "open"))
ggplotly(p)