Ecuacion - Formulas - Sintaxis y comandos Latex

Superindice - Potencia

\[ E=mc^2 \]


\[ a^2 + b^2 = c^2 \]

Subindice

\[ H_2O \]

\[ NH_3 \]

Fracciones - casos - ejemplos

\[ \frac{1}{2} \]

\[ \frac{3}{6}-\frac{2}{9} \]

\[ \frac{5}{2}+3 \]

\[ \frac{1}{7}\times\frac{15}{2} \]

\[ \frac{6}{4}\cdot\frac{2}{8} \]

\[ \frac{2}{3}\div\frac{6}{8} \]

\[ (\frac{9}{3}) \]

\[ \left(\frac{6}{8}\right)^2 \]

Dada la fraccion \(\frac{1}{2}\) podemos determinar el valor de la variable

Dada la fraccion \(\tfrac{1}{2}\) podemos determinar el valor de la variable

Dada la fraccion \(\dfrac{1}{2}\) podemos determinar el valor de la variable

Raices

\[ \sqrt{2}= 1.41213562 \]

\[ \sqrt{3}= 1.73302508 \]

\[ \sqrt{4}= 2 \]

Sumatoria

\[ \sum_{i=1}^5 2i \]

\[ \sum_{i=3}^6 2i-1 \]

\[ \sum_{i=2}^6 \frac{i+1}{i} \]

Logaritmos

\[ \log_7{49}=2 \]

\[ \log_6{216}= 3 \]

\[ \log_3{81}=4 \]

Matrices

\[ \begin{matrix} 1 & 8 & 9 \\ 5 & 2 & 2 \\ 9 & 4 & 9 \\ \end{matrix} \]

\[ \begin{pmatrix} 1 & 8 & 9 \\ 5 & 2 & 2 \\ 9 & 4 & 9 \\ \end{pmatrix} \]

\[ \begin{bmatrix} 1 & 8 & 9 \\ 5 & 2 & 2 \\ 9 & 4 & 9 \\ \end{bmatrix} \]

\[ \begin{Bmatrix} 1 & 8 & 9 \\ 5 & 2 & 2 \\ 9 & 4 & 9 \\ \end{Bmatrix} \]

\[ \begin{Vmatrix} 1 & 8 & 9 \\ 5 & 2 & 2 \\ 9 & 4 & 9 \\ \end{Vmatrix} \]

\[ \begin{vmatrix} 1 & 8 & 9 \\ 5 & 2 & 2 \\ 9 & 4 & 9 \\ \end{vmatrix} \]

Ecuaciones

Dada la funcion

\[ \begin{equation} f(x)= y \end{equation} \]

podemos determinar el valor de la variable

\[ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \]

\[ \text{Formula Ecuacion de 2do Grado} \quad x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Simbolos matematicos Basicos

\[ (900) \]

\[ [900] \]

\[ |900| \]

\[ 900>877 \]

\[ 455<900 \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIHkgY29tYW5kbyBMYXRleCINCnN1YnRpdGxlOiAiTGF0ZXggLSBNYXJrZG93biINCmF1dGhvcjogIkpob25hdGFuIEZsb3JlcyINCmRhdGU6ICIyMDIyLzA1LzAzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIEFuYWRpciBlY3VjYWNpb24geSBmb3JtdWxhcyBlbiBNYXJrZG93biBoYWNpZW5kbyB1c28gZCBMYXRleCAtLT4NCg0KIyBFY3VhY2lvbiAtIEZvcm11bGFzIC0gU2ludGF4aXMgeSBjb21hbmRvcyBMYXRleA0KDQojIyBTdXBlcmluZGljZSAtIFBvdGVuY2lhDQoNCiQkDQpFPW1jXjINCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KYV4yICsgYl4yID0gY14yDQokJA0KDQojIyBTdWJpbmRpY2UNCg0KPCEtLSBndWlvbiBhYmFqbyBsbGV2YSBhbCBzdWJpbmRpY2UgLS0+DQoNCiQkDQpIXzJPDQokJA0KDQokJA0KTkhfMw0KJCQNCg0KIyMgRnJhY2Npb25lcyAtIGNhc29zIC0gZWplbXBsb3MNCg0KJCQNClxmcmFjezF9ezJ9DQokJA0KDQokJA0KXGZyYWN7M317Nn0tXGZyYWN7Mn17OX0NCiQkDQoNCiQkDQpcZnJhY3s1fXsyfSszDQokJA0KDQokJA0KXGZyYWN7MX17N31cdGltZXNcZnJhY3sxNX17Mn0NCiQkDQoNCiQkDQpcZnJhY3s2fXs0fVxjZG90XGZyYWN7Mn17OH0NCiQkDQoNCiQkDQpcZnJhY3syfXszfVxkaXZcZnJhY3s2fXs4fQ0KJCQNCg0KJCQNCihcZnJhY3s5fXszfSkNCiQkDQoNCiQkDQpcbGVmdChcZnJhY3s2fXs4fVxyaWdodCleMg0KJCQNCg0KRGFkYSBsYSBmcmFjY2lvbiAkXGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZQ0KDQpEYWRhIGxhIGZyYWNjaW9uICRcdGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZQ0KDQpEYWRhIGxhIGZyYWNjaW9uICRcZGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZQ0KDQojIyBSYWljZXMNCg0KJCQNClxzcXJ0ezJ9PSAxLjQxMjEzNTYyDQokJA0KDQokJA0KXHNxcnR7M309IDEuNzMzMDI1MDgNCiQkDQoNCiQkDQpcc3FydHs0fT0gMg0KJCQNCg0KIyMgU3VtYXRvcmlhDQoNCiQkDQpcc3VtX3tpPTF9XjUgMmkNCiQkDQoNCiQkDQpcc3VtX3tpPTN9XjYgMmktMQ0KJCQNCg0KJCQNClxzdW1fe2k9Mn1eNiBcZnJhY3tpKzF9e2l9DQokJA0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzd7NDl9PTINCiQkDQoNCiQkDQpcbG9nXzZ7MjE2fT0gMw0KJCQNCg0KJCQNClxsb2dfM3s4MX09NA0KJCQNCg0KIyMgTWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQoxICYgOCAmIDkgXFwNCjUgJiAyICYgMiBcXA0KOSAmIDQgJiA5IFxcDQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KNSAmIDIgJiAyIFxcDQo5ICYgNCAmIDkgXFwNClxlbmR7cG1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Ym1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KNSAmIDIgJiAyIFxcDQo5ICYgNCAmIDkgXFwNClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KNSAmIDIgJiAyIFxcDQo5ICYgNCAmIDkgXFwNClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Vm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KNSAmIDIgJiAyIFxcDQo5ICYgNCAmIDkgXFwNClxlbmR7Vm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KNSAmIDIgJiAyIFxcDQo5ICYgNCAmIDkgXFwNClxlbmR7dm1hdHJpeH0NCiQkDQoNCiMjIEVjdWFjaW9uZXMNCg0KRGFkYSBsYSBmdW5jaW9uDQoNCiQkDQpcYmVnaW57ZXF1YXRpb259DQpmKHgpPSB5DQpcZW5ke2VxdWF0aW9ufQ0KJCQNCg0KcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlDQoNCiQkDQp4PVxmcmFjey1iIFxwbSBcc3FydHtiXjItNGFjfX17MmF9DQokJA0KDQokJA0KXHRleHR7Rm9ybXVsYSBFY3VhY2lvbiBkZSAyZG8gR3JhZG99IFxxdWFkIHg9XGZyYWN7LWIgXHBtIFxzcXJ0e2JeMiAtIDRhY319ezJhfQ0KJCQNCg0KIyMgU2ltYm9sb3MgbWF0ZW1hdGljb3MgQmFzaWNvcw0KDQokJA0KKDkwMCkNCiQkDQoNCiQkDQpbOTAwXQ0KJCQNCg0KJCQNCnw5MDB8DQokJA0KDQokJA0KOTAwPjg3Nw0KJCQNCg0KJCQNCjQ1NTw5MDANCiQkDQo=