Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The xaxis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, ˆpm1 = 1− ˆpm2. You could make this plot by hand, but it will be much easier to make in R.
p=seq(0,1,0.01)
gini= 2*p*(1-p)
classerror= 1-pmax(p,1-p)
crossentropy= -(p*log(p)+(1-p)*log(1-p))
plot(NA,NA,xlim=c(0,1),ylim=c(0,1),xlab='p',ylab='f')
lines(p,gini,type='l')
lines(p,classerror,col='blue')
lines(p,crossentropy,col='red')
legend(x='top',legend=c('gini','class error','cross entropy'),
col=c('black','blue','red'),lty=1,text.width = 0.22)
library(ISLR)
library(tree)
library(randomForest)
library(knitr)
library(kableExtra)
data("trees")
In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.
(a) Split the data set into a training set and a test set.
set.seed(1)
train=sample(1:nrow(Carseats),nrow(Carseats)/2)
(b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?
tree.carseats <- tree(formula=Sales~.,data=Carseats,subset = train)
tree.pred=predict(tree.carseats,Carseats[-train,])
mean((tree.pred-Carseats[-train,'Sales'])^2)
## [1] 4.922039
plot(tree.carseats)
text(tree.carseats)
From the tree we can see that ShelveLoc and price are the two most important factors when predicting car seat sales. This is because they are at the top of the tree. The MSE we get from this chart is 4.922039.
(c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?
set.seed(1)
tree.carseats.cv=cv.tree(tree.carseats)
plot(tree.carseats.cv)
prune.carseats=prune.tree(tree.carseats,best=5)
plot(prune.carseats)
text(prune.carseats)
tree.pred=predict(prune.carseats,Carseats[-train,])
mean((tree.pred-Carseats[-train,'Sales'])^2)
## [1] 5.186482
plot(tree.pred,Carseats[-train,'Sales'],xlab='prediction',ylab='actual')
abline(0,1)
From this test, you can see that the MSE does not improve.
(d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.
d=ncol(Carseats)-1
set.seed(1)
carseats.rf=randomForest(Sales~.,data=Carseats,subset=train,mtry=d,importance=T,ntree=100)
tree.pred=predict(carseats.rf,Carseats[-train,])
mean((tree.pred-Carseats[-train,'Sales'])^2)
## [1] 2.616711
kable(importance(carseats.rf))
| %IncMSE | IncNodePurity | |
|---|---|---|
| CompPrice | 11.4033686 | 169.11991 |
| Income | 1.4751526 | 92.34927 |
| Advertising | 5.3836500 | 96.15208 |
| Population | -2.0667575 | 62.75983 |
| Price | 27.2224905 | 492.32337 |
| ShelveLoc | 22.7210914 | 363.27721 |
| Age | 9.1141420 | 154.10317 |
| Education | -0.6365854 | 46.57603 |
| Urban | -0.6581541 | 10.55949 |
| US | 2.1808079 | 16.20339 |
Here we can see that Price is the most important factor in predicting sales.
(e) Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.
mse=c()
set.seed(1)
for(i in 3:10){
carseats.rf=randomForest(Sales~.,data=Carseats,subset=train,mtry=5,importance=T,ntree=100)
tree.pred=predict(carseats.rf,Carseats[-train,])
mse=rbind(mse,mean((tree.pred-Carseats[-train,'Sales'])^2))}
plot(3:10,mse,type='b')
set.seed(42)
carseats.rf=randomForest(Sales~.,data=Carseats,subset=train,mtry=9,importance=T,ntree=100)
plot(carseats.rf)
kable(importance(carseats.rf))
| %IncMSE | IncNodePurity | |
|---|---|---|
| CompPrice | 11.9946846 | 164.902885 |
| Income | 1.3876551 | 96.815322 |
| Advertising | 5.9451314 | 98.013249 |
| Population | -1.6967648 | 59.503288 |
| Price | 26.5838588 | 504.262677 |
| ShelveLoc | 22.1863369 | 369.834090 |
| Age | 6.5832931 | 164.935171 |
| Education | 0.8204575 | 44.799656 |
| Urban | 1.3786474 | 6.745175 |
| US | -0.4019542 | 16.151430 |
Again the top two predictors are Price and Shelveloc. With only 9 predictors we can see that each tree gets lower training MSE and a higher test MSE.
This problem involves the OJ data set which is part of the ISLR package.
(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
data(OJ)
set.seed(1)
train=sample(1:nrow(OJ),800)
OJ.train=OJ[train,]
OJ.test=OJ[-train,]
(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
OJ.tree=tree(Purchase~.,data=OJ.train)
summary(OJ.tree)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
The training error size is 15.88% and there are 9 terminal nodes. We have 5 predictors used in splits.
(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.
OJ.tree
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196197 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196197 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
Using node 11, PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) “” meaning that marks it as a terminal node. There were 109 observations.
(d) Create a plot of the tree, and interpret the results.
plot(OJ.tree)
text(OJ.tree)
LoyalCH is hands down the most important predictor variable. Citrus Hill(CH) and MinuteMaid(MM) are the lowest. The left shows that there is lower customer loyalty for CH vs MM. On the right we see that if MM was at a lower price, it would be chosen over CH.
(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
OJ.pred.train=predict(OJ.tree,OJ.train,type = 'class')
kable(table(OJ.train[,'Purchase'],OJ.pred.train))
| CH | MM | |
|---|---|---|
| CH | 450 | 35 |
| MM | 92 | 223 |
kable(table(OJ.train[,'Purchase'],OJ.pred.train)/nrow(OJ.train))
| CH | MM | |
|---|---|---|
| CH | 0.5625 | 0.04375 |
| MM | 0.1150 | 0.27875 |
OJ.pred.test=predict(OJ.tree,OJ.test,type = 'class')
kable(table(OJ.test[,'Purchase'],OJ.pred.test))
| CH | MM | |
|---|---|---|
| CH | 160 | 8 |
| MM | 38 | 64 |
kable(table(OJ.test[,'Purchase'],OJ.pred.test)/nrow(OJ.test))
| CH | MM | |
|---|---|---|
| CH | 0.5925926 | 0.0296296 |
| MM | 0.1407407 | 0.2370370 |
The test error rate is around 23.70%
(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.
set.seed(1)
OJ.tree.cv=cv.tree(OJ.tree,K = 10,FUN = prune.misclass)
plot(OJ.tree.cv)
The most optimal size would be 2.
(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
(h) Which tree size corresponds to the lowest cross-validated classification error rate?
(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?
(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?