Los datos son tomados del libro Diseño y análisis de experimentos de Douglas Montgomery. Página 127.
dureza<-c(9.3,9.4,9.6,10.0,9.4,9.3,9.8,9.9,9.2,9.4,9.5,9.7,9.7,9.6,10.0,10.2)
ejemplar<-rep(c("1","2","3","4"),4)
punta<-rep(c("1","2","3","4"),c(4,4,4,4))
datos1<-data.frame(ejemplar,punta,dureza)
anova1<-aov(dureza~punta+ejemplar)
summary(anova1)
## Df Sum Sq Mean Sq F value Pr(>F)
## punta 3 0.385 0.12833 14.44 0.000871 ***
## ejemplar 3 0.825 0.27500 30.94 4.52e-05 ***
## Residuals 9 0.080 0.00889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
estima1<-predict(anova1);estima1
## 1 2 3 4 5 6 7 8 9 10 11
## 9.350 9.375 9.675 9.900 9.375 9.400 9.700 9.925 9.225 9.250 9.550
## 12 13 14 15 16
## 9.775 9.650 9.675 9.975 10.200
error1<-resid(anova1);error1
## 1 2 3 4 5
## -5.000000e-02 2.500000e-02 -7.500000e-02 1.000000e-01 2.500000e-02
## 6 7 8 9 10
## -1.000000e-01 1.000000e-01 -2.500000e-02 -2.500000e-02 1.500000e-01
## 11 12 13 14 15
## -5.000000e-02 -7.500000e-02 5.000000e-02 -7.500000e-02 2.500000e-02
## 16
## -3.556183e-16
qqnorm(error1)
qqline(error1)
plot(punta,error1,pch=16)
abline(h=0)
plot(ejemplar,error1)
abline(h=0)
plot(estima1,error1)
abline(h=0)
ks.test(error1,"pnorm")
##
## One-sample Kolmogorov-Smirnov test
##
## data: error1
## D = 0.46017, p-value = 0.001278
## alternative hypothesis: two-sided
lillie.test(error1)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: error1
## D = 0.13395, p-value = 0.62
ad.test(error1)
##
## Anderson-Darling normality test
##
## data: error1
## A = 0.37514, p-value = 0.3704
bartlett.test(dureza,punta)
##
## Bartlett test of homogeneity of variances
##
## data: dureza and punta
## Bartlett's K-squared = 0.44773, df = 3, p-value = 0.9302
leveneTest(dureza,punta, location=c("mean"), trim.alpha=0.05)
## Warning in leveneTest.default(dureza, punta, location = c("mean"), trim.alpha =
## 0.05): punta coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median: c("mean"))
## Df F value Pr(>F)
## group 3 0.4865 0.698
## 12
leveneTest(dureza,punta, location=c("median"), trim.alpha=0.05)
## Warning in leveneTest.default(dureza, punta, location = c("median"), trim.alpha
## = 0.05): punta coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median: c("median"))
## Df F value Pr(>F)
## group 3 0.4865 0.698
## 12
tuk1<-TukeyHSD(anova1)
tuk1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = dureza ~ punta + ejemplar)
##
## $punta
## diff lwr upr p adj
## 2-1 0.025 -0.18311992 0.23311992 0.9809005
## 3-1 -0.125 -0.33311992 0.08311992 0.3027563
## 4-1 0.300 0.09188008 0.50811992 0.0066583
## 3-2 -0.150 -0.35811992 0.05811992 0.1815907
## 4-2 0.275 0.06688008 0.48311992 0.0113284
## 4-3 0.425 0.21688008 0.63311992 0.0006061
##
## $ejemplar
## diff lwr upr p adj
## 2-1 0.025 -0.18311992 0.2331199 0.9809005
## 3-1 0.325 0.11688008 0.5331199 0.0039797
## 4-1 0.550 0.34188008 0.7581199 0.0000830
## 3-2 0.300 0.09188008 0.5081199 0.0066583
## 4-2 0.525 0.31688008 0.7331199 0.0001200
## 4-3 0.225 0.01688008 0.4331199 0.0341762
plot(tuk1)
df1<-df.residual(anova1)
cme1<-deviance(anova1)/df1
fisher1 <- LSD.test(dureza,punta,df1,cme1, p.adj="bonferroni", group=TRUE,
main="dureza")
fisher1
## $statistics
## MSerror Df Mean CV t.value MSD
## 0.008888889 9 9.625 0.9795419 3.364203 0.2242802
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD bonferroni punta 4 0.05
##
## $means
## dureza std r LCL UCL Min Max Q25 Q50 Q75
## 1 9.575 0.3095696 4 9.468361 9.681639 9.3 10.0 9.375 9.50 9.700
## 2 9.600 0.2943920 4 9.493361 9.706639 9.3 9.9 9.375 9.60 9.825
## 3 9.450 0.2081666 4 9.343361 9.556639 9.2 9.7 9.350 9.45 9.550
## 4 9.875 0.2753785 4 9.768361 9.981639 9.6 10.2 9.675 9.85 10.050
##
## $comparison
## NULL
##
## $groups
## dureza groups
## 4 9.875 a
## 2 9.600 b
## 1 9.575 b
## 3 9.450 b
##
## attr(,"class")
## [1] "group"
newman1 <- SNK.test(dureza,punta,df1,cme1, group=TRUE)
newman1
## $statistics
## MSerror Df Mean CV
## 0.008888889 9 9.625 0.9795419
##
## $parameters
## test name.t ntr alpha
## SNK punta 4 0.05
##
## $snk
## Table CriticalRange
## 2 3.199173 0.1508105
## 3 3.948492 0.1861337
## 4 4.414890 0.2081199
##
## $means
## dureza std r Min Max Q25 Q50 Q75
## 1 9.575 0.3095696 4 9.3 10.0 9.375 9.50 9.700
## 2 9.600 0.2943920 4 9.3 9.9 9.375 9.60 9.825
## 3 9.450 0.2081666 4 9.2 9.7 9.350 9.45 9.550
## 4 9.875 0.2753785 4 9.6 10.2 9.675 9.85 10.050
##
## $comparison
## NULL
##
## $groups
## dureza groups
## 4 9.875 a
## 2 9.600 b
## 1 9.575 b
## 3 9.450 b
##
## attr(,"class")
## [1] "group"
plot(newman1)
dun1 <- duncan.test(dureza,punta,df1,cme1, group=TRUE)
dun1
## $statistics
## MSerror Df Mean CV
## 0.008888889 9 9.625 0.9795419
##
## $parameters
## test name.t ntr alpha
## Duncan punta 4 0.05
##
## $duncan
## Table CriticalRange
## 2 3.199173 0.1508105
## 3 3.339138 0.1574085
## 4 3.419765 0.1612093
##
## $means
## dureza std r Min Max Q25 Q50 Q75
## 1 9.575 0.3095696 4 9.3 10.0 9.375 9.50 9.700
## 2 9.600 0.2943920 4 9.3 9.9 9.375 9.60 9.825
## 3 9.450 0.2081666 4 9.2 9.7 9.350 9.45 9.550
## 4 9.875 0.2753785 4 9.6 10.2 9.675 9.85 10.050
##
## $comparison
## NULL
##
## $groups
## dureza groups
## 4 9.875 a
## 2 9.600 b
## 1 9.575 b
## 3 9.450 b
##
## attr(,"class")
## [1] "group"
plot(dun1)
sch1 <- scheffe.test(dureza,punta,df1,cme1, group=TRUE,main="Dureza")
sch1
## $statistics
## MSerror Df F Mean CV Scheffe CriticalDifference
## 0.008888889 9 3.862548 9.625 0.9795419 3.404063 0.2269375
##
## $parameters
## test name.t ntr alpha
## Scheffe punta 4 0.05
##
## $means
## dureza std r Min Max Q25 Q50 Q75
## 1 9.575 0.3095696 4 9.3 10.0 9.375 9.50 9.700
## 2 9.600 0.2943920 4 9.3 9.9 9.375 9.60 9.825
## 3 9.450 0.2081666 4 9.2 9.7 9.350 9.45 9.550
## 4 9.875 0.2753785 4 9.6 10.2 9.675 9.85 10.050
##
## $comparison
## NULL
##
## $groups
## dureza groups
## 4 9.875 a
## 2 9.600 b
## 1 9.575 b
## 3 9.450 b
##
## attr(,"class")
## [1] "group"
Los datos son tomados del libro Diseño y análisis de experimentos de Douglas Montgomery. Página 144.
carga<-c(24,20,19,24,24,17,24,30,27,36,18,38,26,27,21,26,31,26,23,22,22,30,20,29,31)
operador<-rep(c("1","2","3","4","5"),5)
lote<-rep(c("1","2","3","4","5"),c(5,5,5,5,5))
formula<-c("A","B","C","D","E","B","C","D","E","A","C","D","E","A","B","D","E","A","B","C","E","A","B","C","D")
datos2<-cbind(operador,lote,formula,carga)
anova3<-aov(carga~formula+lote+operador)
summary(anova3)
## Df Sum Sq Mean Sq F value Pr(>F)
## formula 4 330 82.50 7.734 0.00254 **
## lote 4 68 17.00 1.594 0.23906
## operador 4 150 37.50 3.516 0.04037 *
## Residuals 12 128 10.67
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
estima2<-predict(anova3);estima2
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 21.4 20.2 18.0 27.2 24.2 17.6 27.0 30.0 28.0 31.4 19.0 33.6 25.4 29.8 22.2 26.0
## 17 18 19 20 21 22 23 24 25
## 29.4 27.6 21.0 24.0 23.0 32.8 20.0 24.0 32.2
error2<-resid(anova3);error2
## 1 2 3 4 5
## 2.600000e+00 -2.000000e-01 1.000000e+00 -3.200000e+00 -2.000000e-01
## 6 7 8 9 10
## -6.000000e-01 -3.000000e+00 5.551115e-17 -1.000000e+00 4.600000e+00
## 11 12 13 14 15
## -1.000000e+00 4.400000e+00 6.000000e-01 -2.800000e+00 -1.200000e+00
## 16 17 18 19 20
## -2.609024e-15 1.600000e+00 -1.600000e+00 2.000000e+00 -2.000000e+00
## 21 22 23 24 25
## -1.000000e+00 -2.800000e+00 9.992007e-16 5.000000e+00 -1.200000e+00
qqnorm(error2)
qqline(error2)
plot(estima2,error2,pch=16)
abline(h=0)
plot(lote,error2)
abline(h=0)
plot(operador,error2,pch=16)
abline(h=0)
ks.test(error2,"pnorm")
##
## One-sample Kolmogorov-Smirnov test
##
## data: error2
## D = 0.28134, p-value = 0.03044
## alternative hypothesis: two-sided
lillie.test(error2)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: error2
## D = 0.18, p-value = 0.03581
ad.test(error2)
##
## Anderson-Darling normality test
##
## data: error2
## A = 0.65237, p-value = 0.07829
bartlett.test(carga,formula)
##
## Bartlett test of homogeneity of variances
##
## data: carga and formula
## Bartlett's K-squared = 3.0816, df = 4, p-value = 0.5443
leveneTest(carga,formula, location=c("mean"), trim.alpha=0.05)
## Warning in leveneTest.default(carga, formula, location = c("mean"), trim.alpha =
## 0.05): formula coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median: c("mean"))
## Df F value Pr(>F)
## group 4 0.5858 0.6766
## 20
leveneTest(carga,formula, location=c("median"), trim.alpha=0.05)
## Warning in leveneTest.default(carga, formula, location = c("median"), trim.alpha
## = 0.05): formula coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median: c("median"))
## Df F value Pr(>F)
## group 4 0.5858 0.6766
## 20
tuk2<-TukeyHSD(anova3);tuk2
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = carga ~ formula + lote + operador)
##
## $formula
## diff lwr upr p adj
## B-A -8.4 -14.9839317 -1.8160683 0.0110827
## C-A -6.2 -12.7839317 0.3839317 0.0684350
## D-A 1.2 -5.3839317 7.7839317 0.9754380
## E-A -2.6 -9.1839317 3.9839317 0.7194121
## C-B 2.2 -4.3839317 8.7839317 0.8204614
## D-B 9.6 3.0160683 16.1839317 0.0041583
## E-B 5.8 -0.7839317 12.3839317 0.0944061
## D-C 7.4 0.8160683 13.9839317 0.0254304
## E-C 3.6 -2.9839317 10.1839317 0.4461852
## E-D -3.8 -10.3839317 2.7839317 0.3966727
##
## $lote
## diff lwr upr p adj
## 2-1 4.6 -1.983932 11.183932 0.2341812
## 3-1 3.8 -2.783932 10.383932 0.3966727
## 4-1 3.4 -3.183932 9.983932 0.4985311
## 5-1 4.2 -2.383932 10.783932 0.3079352
## 3-2 -0.8 -7.383932 5.783932 0.9945757
## 4-2 -1.2 -7.783932 5.383932 0.9754380
## 5-2 -0.4 -6.983932 6.183932 0.9996368
## 4-3 -0.4 -6.983932 6.183932 0.9996368
## 5-3 0.4 -6.183932 6.983932 0.9996368
## 5-4 0.8 -5.783932 7.383932 0.9945757
##
## $operador
## diff lwr upr p adj
## 2-1 7.2 0.6160683 13.783932 0.0300318
## 3-1 2.8 -3.7839317 9.383932 0.6646176
## 4-1 4.6 -1.9839317 11.183932 0.2341812
## 5-1 5.4 -1.1839317 11.983932 0.1292447
## 3-2 -4.4 -10.9839317 2.183932 0.2691629
## 4-2 -2.6 -9.1839317 3.983932 0.7194121
## 5-2 -1.8 -8.3839317 4.783932 0.9019734
## 4-3 1.8 -4.7839317 8.383932 0.9019734
## 5-3 2.6 -3.9839317 9.183932 0.7194121
## 5-4 0.8 -5.7839317 7.383932 0.9945757
plot(tuk2)
df2<-df.residual(anova3)
cme2<-deviance(anova3)/df2
fisher2 <- LSD.test(carga,formula,df2,cme2, p.adj="bonferroni", group=TRUE,
main="carga")
fisher2
## $statistics
## MSerror Df Mean CV t.value MSD
## 10.66667 12 25.4 12.85821 3.428444 7.081764
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD bonferroni formula 5 0.05
##
## $means
## carga std r LCL UCL Min Max Q25 Q50 Q75
## A 28.6 4.669047 5 25.41764 31.78236 24 36 26 27 30
## B 20.2 2.167948 5 17.01764 23.38236 17 23 20 20 21
## C 22.4 4.393177 5 19.21764 25.58236 18 29 19 22 24
## D 29.8 5.403702 5 26.61764 32.98236 24 38 26 30 31
## E 26.0 3.391165 5 22.81764 29.18236 22 31 24 26 27
##
## $comparison
## NULL
##
## $groups
## carga groups
## D 29.8 a
## A 28.6 ab
## E 26.0 abc
## C 22.4 bc
## B 20.2 c
##
## attr(,"class")
## [1] "group"
newman2 <- SNK.test(carga,formula,df2,cme2, group=TRUE)
newman2
## $statistics
## MSerror Df Mean CV
## 10.66667 12 25.4 12.85821
##
## $parameters
## test name.t ntr alpha
## SNK formula 5 0.05
##
## $snk
## Table CriticalRange
## 2 3.081307 4.500536
## 3 3.772929 5.510715
## 4 4.198660 6.132536
## 5 4.507710 6.583932
##
## $means
## carga std r Min Max Q25 Q50 Q75
## A 28.6 4.669047 5 24 36 26 27 30
## B 20.2 2.167948 5 17 23 20 20 21
## C 22.4 4.393177 5 18 29 19 22 24
## D 29.8 5.403702 5 24 38 26 30 31
## E 26.0 3.391165 5 22 31 24 26 27
##
## $comparison
## NULL
##
## $groups
## carga groups
## D 29.8 a
## A 28.6 a
## E 26.0 ab
## C 22.4 bc
## B 20.2 c
##
## attr(,"class")
## [1] "group"
plot(newman2)
dun2 <- duncan.test(carga,formula,df2,cme2, group=TRUE)
dun2
## $statistics
## MSerror Df Mean CV
## 10.66667 12 25.4 12.85821
##
## $parameters
## test name.t ntr alpha
## Duncan formula 5 0.05
##
## $duncan
## Table CriticalRange
## 2 3.081307 4.500536
## 3 3.225244 4.710770
## 4 3.312453 4.838147
## 5 3.370172 4.922451
##
## $means
## carga std r Min Max Q25 Q50 Q75
## A 28.6 4.669047 5 24 36 26 27 30
## B 20.2 2.167948 5 17 23 20 20 21
## C 22.4 4.393177 5 18 29 19 22 24
## D 29.8 5.403702 5 24 38 26 30 31
## E 26.0 3.391165 5 22 31 24 26 27
##
## $comparison
## NULL
##
## $groups
## carga groups
## D 29.8 a
## A 28.6 a
## E 26.0 ab
## C 22.4 bc
## B 20.2 c
##
## attr(,"class")
## [1] "group"
plot(dun2)
sch2 <- scheffe.test(carga,formula,df2,cme2, group=TRUE,main="carga")
sch2
## $statistics
## MSerror Df F Mean CV Scheffe CriticalDifference
## 10.66667 12 3.259167 25.4 12.85821 3.610632 7.45809
##
## $parameters
## test name.t ntr alpha
## Scheffe formula 5 0.05
##
## $means
## carga std r Min Max Q25 Q50 Q75
## A 28.6 4.669047 5 24 36 26 27 30
## B 20.2 2.167948 5 17 23 20 20 21
## C 22.4 4.393177 5 18 29 19 22 24
## D 29.8 5.403702 5 24 38 26 30 31
## E 26.0 3.391165 5 22 31 24 26 27
##
## $comparison
## NULL
##
## $groups
## carga groups
## D 29.8 a
## A 28.6 a
## E 26.0 ab
## C 22.4 ab
## B 20.2 b
##
## attr(,"class")
## [1] "group"
Los datos son tomados del libro Diseño y análisis de experimentos de Douglas Montgomery. Página 153.
car<-c(-1,-5,-6,-1,-1,-8,-1,5,2,11,-7,13,1,2,-4,1,6,1,-2,-3,-3,5,-5,4,6)
montaje<-c("M1","M3","M5","M2","M4","M2","M4","M1","M3","M5","M3","M5","M2","M4","M1","M3","M1","M3","M5","M2","M5","M2","M4","M1","M3")
opera<-rep(c("1","2","3","4","5"),5)
lot<-rep(c("1","2","3","4","5"),c(5,5,5,5,5))
forma<-c("A","B","C","D","E","B","C","D","E","A","C","D","E","A","B","D","E","A","B","C","E","A","B","C","D")
anova4<-aov(car~forma+lot+opera+montaje)
summary(anova4)
## Df Sum Sq Mean Sq F value Pr(>F)
## forma 4 330.0 82.50 10.190 0.00315 **
## lot 4 68.0 17.00 2.100 0.17265
## opera 4 150.0 37.50 4.632 0.03138 *
## montaje 4 63.2 15.81 1.953 0.19508
## Residuals 8 64.8 8.10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
estima3<-predict(anova4);estima3
## 1 2 3 4 5 6 7
## -2.0666667 -5.4666667 -4.7000000 0.5333333 -2.3000000 -9.0666667 0.5000000
## 8 9 10 11 12 13 14
## 6.5333333 2.3333333 8.7000000 -6.8333333 10.7333333 -1.1000000 3.3000000
## 15 16 17 18 19 20 21
## -1.1000000 -0.1666667 5.9333333 1.7666667 -1.8666667 -2.6666667 0.1333333
## 22 23 24 25
## 6.3000000 -6.5000000 0.7000000 6.3666667
error3<-resid(anova4);error3
## 1 2 3 4 5 6
## 1.06666667 0.46666667 -1.30000000 -1.53333333 1.30000000 1.06666667
## 7 8 9 10 11 12
## -1.50000000 -1.53333333 -0.33333333 2.30000000 -0.16666667 2.26666667
## 13 14 15 16 17 18
## 2.10000000 -1.30000000 -2.90000000 1.16666667 0.06666667 -0.76666667
## 19 20 21 22 23 24
## -0.13333333 -0.33333333 -3.13333333 -1.30000000 1.50000000 3.30000000
## 25
## -0.36666667
qqnorm(error3)
qqline(error3)
plot(estima3,error3,pch=16)
abline(h=0)
ks.test(error3,"pnorm")
## Warning in ks.test(error3, "pnorm"): ties should not be present for the
## Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: error3
## D = 0.2232, p-value = 0.1656
## alternative hypothesis: two-sided
lillie.test(error3)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: error3
## D = 0.10563, p-value = 0.6696
ad.test(error3)
##
## Anderson-Darling normality test
##
## data: error3
## A = 0.28276, p-value = 0.6055
bartlett.test(car,forma)
##
## Bartlett test of homogeneity of variances
##
## data: car and forma
## Bartlett's K-squared = 3.0816, df = 4, p-value = 0.5443
leveneTest(car,forma, location=c("mean"), trim.alpha=0.05)
## Warning in leveneTest.default(car, forma, location = c("mean"), trim.alpha =
## 0.05): forma coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median: c("mean"))
## Df F value Pr(>F)
## group 4 0.5858 0.6766
## 20
leveneTest(car,forma, location=c("median"), trim.alpha=0.05)
## Warning in leveneTest.default(car, forma, location = c("median"), trim.alpha =
## 0.05): forma coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median: c("median"))
## Df F value Pr(>F)
## group 4 0.5858 0.6766
## 20
tuk3<-TukeyHSD(anova4);tuk3
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = car ~ forma + lot + opera + montaje)
##
## $forma
## diff lwr upr p adj
## B-A -8.4 -14.6169503 -2.1830497 0.0102087
## C-A -6.2 -12.4169503 0.0169503 0.0506448
## D-A 1.2 -5.0169503 7.4169503 0.9583246
## E-A -2.6 -8.8169503 3.6169503 0.6195880
## C-B 2.2 -4.0169503 8.4169503 0.7402499
## D-B 9.6 3.3830497 15.8169503 0.0045658
## E-B 5.8 -0.4169503 12.0169503 0.0685959
## D-C 7.4 1.1830497 13.6169503 0.0207648
## E-C 3.6 -2.6169503 9.8169503 0.3447704
## E-D -3.8 -10.0169503 2.4169503 0.3013038
##
## $lot
## diff lwr upr p adj
## 2-1 4.6 -1.61695 10.81695 0.1698430
## 3-1 3.8 -2.41695 10.01695 0.3013038
## 4-1 3.4 -2.81695 9.61695 0.3926306
## 5-1 4.2 -2.01695 10.41695 0.2274899
## 3-2 -0.8 -7.01695 5.41695 0.9903363
## 4-2 -1.2 -7.41695 5.01695 0.9583246
## 5-2 -0.4 -6.61695 5.81695 0.9993320
## 4-3 -0.4 -6.61695 5.81695 0.9993320
## 5-3 0.4 -5.81695 6.61695 0.9993320
## 5-4 0.8 -5.41695 7.01695 0.9903363
##
## $opera
## diff lwr upr p adj
## 2-1 7.2 0.9830497 13.41695 0.0240279
## 3-1 2.8 -3.4169503 9.01695 0.5590690
## 4-1 4.6 -1.6169503 10.81695 0.1698430
## 5-1 5.4 -0.8169503 11.61695 0.0929889
## 3-2 -4.4 -10.6169503 1.81695 0.1967853
## 4-2 -2.6 -8.8169503 3.61695 0.6195880
## 5-2 -1.8 -8.0169503 4.41695 0.8484048
## 4-3 1.8 -4.4169503 8.01695 0.8484048
## 5-3 2.6 -3.6169503 8.81695 0.6195880
## 5-4 0.8 -5.4169503 7.01695 0.9903363
##
## $montaje
## diff lwr upr p adj
## M2-M1 -3.2000000 -9.416950 3.016950 0.4446634
## M3-M1 -2.4333333 -8.385610 3.518943 0.6374328
## M4-M1 -3.1000000 -9.694072 3.494072 0.5227762
## M5-M1 0.6000000 -5.616950 6.816950 0.9967587
## M3-M2 0.7666667 -5.185610 6.718943 0.9903021
## M4-M2 0.1000000 -6.494072 6.694072 0.9999979
## M5-M2 3.8000000 -2.416950 10.016950 0.3013038
## M4-M3 -0.6666667 -7.011815 5.678482 0.9955104
## M5-M3 3.0333333 -2.918943 8.985610 0.4532901
## M5-M4 3.7000000 -2.894072 10.294072 0.3709451
plot(tuk3)
df3<-df.residual(anova4)
cme3<-deviance(anova4)/df3
fisher3 <- LSD.test(car,forma,df3,cme3, p.adj="bonferroni", group=TRUE,main="carga");fisher3
## $statistics
## MSerror Df Mean CV t.value MSD
## 8.095833 8 0.4 711.3294 3.832519 6.896759
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD bonferroni forma 5 0.05
##
## $means
## car std r LCL UCL Min Max Q25 Q50 Q75
## A 3.6 4.669047 5 0.6656909 6.5343091 -1 11 1 2 5
## B -4.8 2.167948 5 -7.7343091 -1.8656909 -8 -2 -5 -5 -4
## C -2.6 4.393177 5 -5.5343091 0.3343091 -7 4 -6 -3 -1
## D 4.8 5.403702 5 1.8656909 7.7343091 -1 13 1 5 6
## E 1.0 3.391165 5 -1.9343091 3.9343091 -3 6 -1 1 2
##
## $comparison
## NULL
##
## $groups
## car groups
## D 4.8 a
## A 3.6 ab
## E 1.0 abc
## C -2.6 bc
## B -4.8 c
##
## attr(,"class")
## [1] "group"
newman3 <- SNK.test(car,forma,df3,cme3, group=TRUE);newman3
## $statistics
## MSerror Df Mean CV
## 8.095833 8 0.4 711.3294
##
## $parameters
## test name.t ntr alpha
## SNK forma 5 0.05
##
## $snk
## Table CriticalRange
## 2 3.261182 4.149740
## 3 4.041036 5.142077
## 4 4.528810 5.762751
## 5 4.885754 6.216950
##
## $means
## car std r Min Max Q25 Q50 Q75
## A 3.6 4.669047 5 -1 11 1 2 5
## B -4.8 2.167948 5 -8 -2 -5 -5 -4
## C -2.6 4.393177 5 -7 4 -6 -3 -1
## D 4.8 5.403702 5 -1 13 1 5 6
## E 1.0 3.391165 5 -3 6 -1 1 2
##
## $comparison
## NULL
##
## $groups
## car groups
## D 4.8 a
## A 3.6 a
## E 1.0 ab
## C -2.6 bc
## B -4.8 c
##
## attr(,"class")
## [1] "group"
plot(newman3)
dun3 <- duncan.test(car,forma,df3,cme3, group=TRUE);dun3
## $statistics
## MSerror Df Mean CV
## 8.095833 8 0.4 711.3294
##
## $parameters
## test name.t ntr alpha
## Duncan forma 5 0.05
##
## $duncan
## Table CriticalRange
## 2 3.261182 4.149740
## 3 3.398460 4.324421
## 4 3.475191 4.422058
## 5 3.521194 4.480595
##
## $means
## car std r Min Max Q25 Q50 Q75
## A 3.6 4.669047 5 -1 11 1 2 5
## B -4.8 2.167948 5 -8 -2 -5 -5 -4
## C -2.6 4.393177 5 -7 4 -6 -3 -1
## D 4.8 5.403702 5 -1 13 1 5 6
## E 1.0 3.391165 5 -3 6 -1 1 2
##
## $comparison
## NULL
##
## $groups
## car groups
## D 4.8 a
## A 3.6 a
## E 1.0 ab
## C -2.6 bc
## B -4.8 c
##
## attr(,"class")
## [1] "group"
plot(dun3)
sch3 <- scheffe.test(car,forma,df3,cme3,group=TRUE,main="carga");sch3
## $statistics
## MSerror Df F Mean CV Scheffe CriticalDifference
## 8.095833 8 3.837853 0.4 711.3294 3.918088 7.050744
##
## $parameters
## test name.t ntr alpha
## Scheffe forma 5 0.05
##
## $means
## car std r Min Max Q25 Q50 Q75
## A 3.6 4.669047 5 -1 11 1 2 5
## B -4.8 2.167948 5 -8 -2 -5 -5 -4
## C -2.6 4.393177 5 -7 4 -6 -3 -1
## D 4.8 5.403702 5 -1 13 1 5 6
## E 1.0 3.391165 5 -3 6 -1 1 2
##
## $comparison
## NULL
##
## $groups
## car groups
## D 4.8 a
## A 3.6 ab
## E 1.0 abc
## C -2.6 bc
## B -4.8 c
##
## attr(,"class")
## [1] "group"
|—|
O.M.F.
|-|-|-|