R Markdown

Use integration by substitution to solve the integral below.

\(\int4e^{-7x} dx\)

Let u = -7x \(\int4e^{u} dx\)

\(\frac{du}{dx} = -7\) \(dx = \frac{du}{7}\)

\(\int{\frac4{7}e^u}du\)

\(\frac4{7} \int{e^u} du\)

\(\frac4{7}e^u\)

\(\frac4{7}e^{-7x} + C\)

Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{DN}{Dt} = - \frac{3150}{t^4} - 220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function \(N(t)\) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.

\(\int -3150 t^{-4} -220\)

\(-3150\frac{t^{-3}}{-3} -220t + C\)

\(6530 = -3150\frac{1^{-3}}{-3} -220(1) + C\) \(C = 6530 + 1270 = 7800\)

\(N(t) = -1050t^{-3} -220t + 7800\)

Find the total area of the red rectangles in the figure below, where the equation of the line is \(f(x) = 2x - 9\).

\(\int_{4.5}^{8.5} 2x-9 dx\)

\(\int_{4.5}^{8.5} x^2 -9x\)

\(((8.5)^2 - 9(8.5)) - ((4.5)^2 - 9(4.5)) = 16\)

Find the area of the region bounded by the graphs of the given equations. \(y = x^2 - 2x - 2, y = x + 2\)

\(A = \int{x^2 - 2x - 2 dx} - \int{x+2}\)

\(A = \int{x^2 -3x -4} dx\)

\((x+1),(x-4)\)

\(\int_{-1}^{4} x^2 -3x -4 dx\)

\(\frac{x^3}{3} - \frac{3x^2}{2} - 4x\)

\((\frac{64}{3} - \frac{48}{2} - 16) -( \frac{-1}{3} - \frac{3}{2} + 4) = -18.66667 - 2.166667 = -20.83334\)

A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.

\(Storage_Cost = \frac{3.75n}{2} + \frac{8.25 * 110}{n}\)

\(f(x) = \frac{3.75n}{2} + \frac{8.25 * 110}{n}\)

\(f(x) = 1.875n + \frac{907.5}{n}\)

\(f'(x) = 1.875 + \frac{907.5}{n^2}\)

\(0 = 1.875 + \frac{907.5}{n^2}\)

\(1.875(n^2) = 907.5\)

\(n^2 = 484\)

\(n = 22\)

Use integration by parts to solve the integral below. \(\int{ln(9x)*x^6} dx\)

\(\int{udv} = uv - \int{vdu}\)

let \(u = ln(9x)\) and \(v = \frac{1}{7}x^7\), \(\frac{du}{dx} = \frac1{x}\) and $ = x^6$

\(\int{ln(9x)*x^6dx} = ln(9x)*\frac{1}{7}x^7 - \int{\frac{1}{7}x^7*\frac1{x}dx}\)

\(= ln(9x)*\frac{1}{7}x^7 - \int{\frac1{7}x^6}\)

\(= ln(9x)*\frac{1}{7}x^7 - \int{\frac1{7}x^6}\)

\(= ln(9x)*\frac{1}{7}x^7 - \frac1{49}x^7\)

\(= \frac1{49}x^7(7ln(9x)* - 1)\)

Determine whether \(f(x)\) is a probability density function on the interval \([1, e^6]\). If not, determine the value of the definite integral.

\(f(x) = \frac1{6x}\)

\(\int_{1}^{e^6} \frac1{6x} dx\)

\(\frac1{6} ln(x)\)

\(\frac1{6} ln(e^6)\) - \(\frac1{6} ln(1)\) = \(1 - 0 = 1\)

The function is a probability density function on the interval \([1, e^6]\), because the area encapsulated by the interval is 1.