\(\int 4e^{-7x} \mathrm{d}x\)
So we need the integral to be in the form
\(\int f(g(x)) g'(x) \mathrm{d}x\)
We can pull the 4 out as a first step
\(4 \int e^{-7x} \mathrm{d}x\)
Then we need to the g’(x):
\(\frac{4}{-7} \int -7e^{-7x} \mathrm{d}x\)
Now our u substitution:
\(\frac{4}{-7} \int e^{u} \mathrm{d}u\)
\(\frac{4}{-7} e^{u} + C\)
\(\frac{4}{-7} e^{-7x} + C\)
We can use integration and the power rule to find our equation.
\(f(t) = \int- \frac{3150}{t^4}\mathrm{d}t -\int220\mathrm{d}t\)
\(f(t) = 3150\int- \frac{1}{t^4}\mathrm{d}t -\int220\mathrm{d}t\)
\(f(t) = 3150 \frac{1}{t^3} - 220t + C\)
\(6530 = 3150- 220 + 3600\)
\(f(t) = 3150 \frac{1}{t^3} - 220t + 3600\)
I used this page as a reference
first calculate our 4 midpoints on the x axis
x1 = 1/8 * 4.5 + 4.5
x2 = 3/8 * 4.5 + 4.5
x3 = 5/8 * 4.5 + 4.5
x4 = 7/8 * 4.5 + 4.5
find the heights by plugging our midpoints into the equation
h1 = 2*x1 - 9
h2 = 2*x2 - 9
h3 = 2*x3 - 9
h4 = 2*x4 - 9
find our areas by multiplying our width (\(\Delta x\)) by heights and then summing
width = (8.5 - 4.5) * 1/4
a1 = width * h1
a2 = width* h2
a3 = width * h3
a4 = width * h4
total_area = a1 + a2 + a3 + a4
total_area
## [1] 18
library(geiger)
## Loading required package: ape
## Warning: package 'ape' was built under R version 4.1.2
x = seq(-10, 10, by=1)
f1 = (-10:10)^2 - 2*(-10:10) - 2
f2 = (-10:10) + 2
geiger:::.area.between.curves(x, f1, f2)
## [1] 5
C = cost n = number of orders x = number of irons in the order nx = 110
Tricky part: at any given time, there are on average x/2 irons in storage.
\(C = \frac{x}{2}∗3.75+8.25∗n\)
\(C=\frac{\frac{110}{n}}{2}∗3.75+8.25∗n\)
\(C=\frac{110}{2n}∗3.75+8.25∗n\)
\(C=55\frac{1}{n}∗3.75+8.25∗n\)
\(C'=-55\frac{1}{n^{-2}}∗3.75+8.25\)
We need to take the derivative and solve for 0.
\(0=-55\frac{1}{n^{2}}∗3.75+8.25\)
\(0=-55\frac{1}{n^{2}}∗3.75+8.25\)
\(\frac{-8.25}{-206.25}=\frac{1}{n^{2}}\)
\(\frac{-206.25}{-8.25}={n^{2}}\)
n = 5
5 * x = 110
x = 22
\(\int ln(9x) * x^6\mathrm{d}x\)
\(u = ln(9x)\)
\(dv = x^6\mathrm{d}x\)
\(du = \frac{1}{x}\mathrm{d}x\)
\(v = \frac{x^7}{7}\)
\(\int u\mathrm{d}v = uv - \int v\mathrm{d}u\)
\(\int ln(9x) * x^6\mathrm{d}x = ln(9x)\frac{x^7}{7} - \int \frac{x^7}{7} \frac{1}{x}\mathrm{d}x\)
\(ln(9x)\frac{x^7}{7} - \frac{1}{49} x^7 + C\)
\(\int^{e^6}_{1} \frac{1}{6x}dx\)
\(\frac{1}{6}ln(x)]^{e^6}_{1}\)
\(\frac{1}{6}ln(x^6) - \frac{1}{6}ln(1)\)
\(\frac{6}{6} - 0\)
It is a probability density function