Cargando datos

housing.data <- read.csv("C:/Users/LUIS 1/Desktop/MachineLearningR/data/t1/housing-with-missing-value.csv", header = TRUE, stringsAsFactors = FALSE)
summary(housing.data)
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##                                                                     
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##                                                                     
##       dis              rad              tax           ptratio     
##  Min.   : 1.130   Min.   : 1.000   Min.   :187.0   Min.   :12.60  
##  1st Qu.: 2.100   1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40  
##  Median : 3.207   Median : 5.000   Median :330.0   Median :19.10  
##  Mean   : 3.795   Mean   : 9.515   Mean   :408.2   Mean   :18.47  
##  3rd Qu.: 5.188   3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20  
##  Max.   :12.127   Max.   :24.000   Max.   :711.0   Max.   :22.00  
##                   NA's   :40                       NA's   :40     
##        b              lstat            medv      
##  Min.   :  0.32   Min.   : 1.73   Min.   : 5.00  
##  1st Qu.:375.38   1st Qu.: 6.95   1st Qu.:17.02  
##  Median :391.44   Median :11.36   Median :21.20  
##  Mean   :356.67   Mean   :12.65   Mean   :22.53  
##  3rd Qu.:396.23   3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :396.90   Max.   :37.97   Max.   :50.00  
## 
str(housing.data)
## 'data.frame':    506 obs. of  15 variables:
##  $ X      : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...
##  $ tax    : int  296 242 242 222 222 222 311 311 311 311 ...
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ b      : num  397 397 393 395 397 ...
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
head(housing.data)
##   X    crim zn indus chas   nox    rm  age    dis rad tax ptratio      b lstat
## 1 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90  4.98
## 2 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90  9.14
## 3 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83  4.03
## 4 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63  2.94
## 5 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90  5.33
## 6 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12  5.21
##   medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7

ELiminar todas las observaciones que contengan algún NA

housing.data.1 <- na.omit(housing.data)
summary(housing.data.1)
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:120.5   1st Qu.: 0.07373   1st Qu.:  0.00   1st Qu.: 5.13  
##  Median :252.0   Median : 0.25356   Median :  0.00   Median : 8.56  
##  Mean   :251.4   Mean   : 3.66428   Mean   : 11.79   Mean   :11.03  
##  3rd Qu.:381.5   3rd Qu.: 3.69503   3rd Qu.: 15.00   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4480   1st Qu.:5.886   1st Qu.: 45.25  
##  Median :0.00000   Median :0.5380   Median :6.195   Median : 76.70  
##  Mean   :0.06729   Mean   :0.5529   Mean   :6.277   Mean   : 68.51  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.630   3rd Qu.: 94.30  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##       dis              rad              tax           ptratio     
##  Min.   : 1.130   Min.   : 1.000   Min.   :187.0   Min.   :12.60  
##  1st Qu.: 2.083   1st Qu.: 4.000   1st Qu.:278.0   1st Qu.:17.40  
##  Median : 3.360   Median : 5.000   Median :330.0   Median :19.10  
##  Mean   : 3.861   Mean   : 9.599   Mean   :407.8   Mean   :18.47  
##  3rd Qu.: 5.287   3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20  
##  Max.   :12.127   Max.   :24.000   Max.   :711.0   Max.   :22.00  
##        b              lstat            medv      
##  Min.   :  0.32   Min.   : 1.73   Min.   : 5.00  
##  1st Qu.:374.96   1st Qu.: 6.91   1st Qu.:16.60  
##  Median :391.45   Median :11.41   Median :21.10  
##  Mean   :357.24   Mean   :12.76   Mean   :22.38  
##  3rd Qu.:396.25   3rd Qu.:17.14   3rd Qu.:25.00  
##  Max.   :396.90   Max.   :37.97   Max.   :50.00

Eliminar las NAs de ciertas columnas

drop_na <- c("rad")
housing.data.2 <- housing.data[ 
  complete.cases(housing.data[,!(names(housing.data))%in% drop_na]),]

summary(housing.data.2)
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:126.2   1st Qu.: 0.07880   1st Qu.:  0.00   1st Qu.: 5.13  
##  Median :254.5   Median : 0.25651   Median :  0.00   Median : 8.56  
##  Mean   :253.5   Mean   : 3.73046   Mean   : 11.53   Mean   :11.06  
##  3rd Qu.:380.8   3rd Qu.: 3.68939   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##                                                                     
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.62  
##  Median :0.00000   Median :0.5380   Median :6.211   Median : 76.80  
##  Mean   :0.06438   Mean   :0.5536   Mean   :6.284   Mean   : 68.72  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.630   3rd Qu.: 94.38  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##                                                                     
##       dis              rad              tax           ptratio     
##  Min.   : 1.130   Min.   : 1.000   Min.   :187.0   Min.   :12.60  
##  1st Qu.: 2.091   1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40  
##  Median : 3.299   Median : 5.000   Median :330.0   Median :19.10  
##  Mean   : 3.824   Mean   : 9.599   Mean   :408.7   Mean   :18.47  
##  3rd Qu.: 5.215   3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20  
##  Max.   :12.127   Max.   :24.000   Max.   :711.0   Max.   :22.00  
##                   NA's   :35                                      
##        b              lstat             medv      
##  Min.   :  0.32   Min.   : 1.730   Min.   : 5.00  
##  1st Qu.:375.24   1st Qu.: 6.923   1st Qu.:16.73  
##  Median :391.38   Median :11.235   Median :21.20  
##  Mean   :358.05   Mean   :12.662   Mean   :22.53  
##  3rd Qu.:396.23   3rd Qu.:17.043   3rd Qu.:25.00  
##  Max.   :396.90   Max.   :37.970   Max.   :50.00  
## 

Eliminar toda una columna

housing.data$rad <- NULL
summary(housing.data)
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##                                                                     
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##                                                                     
##       dis              tax           ptratio            b         
##  Min.   : 1.130   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 2.100   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 3.207   Median :330.0   Median :19.10   Median :391.44  
##  Mean   : 3.795   Mean   :408.2   Mean   :18.47   Mean   :356.67  
##  3rd Qu.: 5.188   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :12.127   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##                                   NA's   :40                      
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00  
## 
drops <- c("rad", "ptratio")
housing.data.3 <- housing.data[,!(names(housing.data) %in% drops)]
summary(housing.data.3)
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##       dis              tax              b              lstat      
##  Min.   : 1.130   Min.   :187.0   Min.   :  0.32   Min.   : 1.73  
##  1st Qu.: 2.100   1st Qu.:279.0   1st Qu.:375.38   1st Qu.: 6.95  
##  Median : 3.207   Median :330.0   Median :391.44   Median :11.36  
##  Mean   : 3.795   Mean   :408.2   Mean   :356.67   Mean   :12.65  
##  3rd Qu.: 5.188   3rd Qu.:666.0   3rd Qu.:396.23   3rd Qu.:16.95  
##  Max.   :12.127   Max.   :711.0   Max.   :396.90   Max.   :37.97  
##       medv      
##  Min.   : 5.00  
##  1st Qu.:17.02  
##  Median :21.20  
##  Mean   :22.53  
##  3rd Qu.:25.00  
##  Max.   :50.00
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.1.3
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
housing.data.copy1 <- housing.data
housing.data.copy1$ptratio <- impute(housing.data.copy1$ptratio, mean)
housing.data.copy1$rad <- impute(housing.data.copy1$rad, mean)
summary(housing.data.copy1)
## 
##  40 values imputed to 18.4676
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##       dis              tax           ptratio            b         
##  Min.   : 1.130   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 2.100   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 3.207   Median :330.0   Median :18.60   Median :391.44  
##  Mean   : 3.795   Mean   :408.2   Mean   :18.47   Mean   :356.67  
##  3rd Qu.: 5.188   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :12.127   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
housing.data.copy2 <- housing.data
housing.data.copy2$ptratio <- impute(housing.data.copy2$ptratio, median)
housing.data.copy2$rad <- impute(housing.data.copy2$rad, median)
summary(housing.data.copy2)
## 
##  40 values imputed to 19.1
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##       dis              tax           ptratio            b         
##  Min.   : 1.130   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 2.100   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 3.207   Median :330.0   Median :19.10   Median :391.44  
##  Mean   : 3.795   Mean   :408.2   Mean   :18.52   Mean   :356.67  
##  3rd Qu.: 5.188   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :12.127   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
housing.data.copy3 <- housing.data
housing.data.copy3$ptratio <- impute(housing.data.copy3$ptratio, 18)
housing.data.copy3$rad <- impute(housing.data.copy3$rad, 7)
summary(housing.data.copy3)
## 
##  40 values imputed to 18
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##       dis              tax           ptratio            b         
##  Min.   : 1.130   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 2.100   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 3.207   Median :330.0   Median :18.60   Median :391.44  
##  Mean   : 3.795   Mean   :408.2   Mean   :18.43   Mean   :356.67  
##  3rd Qu.: 5.188   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :12.127   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
library(mice)
## Warning: package 'mice' was built under R version 4.1.3
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
md.pattern(housing.data)

##     X crim zn indus chas nox rm age dis tax b lstat medv ptratio   
## 466 1    1  1     1    1   1  1   1   1   1 1     1    1       1  0
## 40  1    1  1     1    1   1  1   1   1   1 1     1    1       0  1
##     0    0  0     0    0   0  0   0   0   0 0     0    0      40 40
library(VIM)
## Warning: package 'VIM' was built under R version 4.1.3
## Loading required package: colorspace
## Warning: package 'colorspace' was built under R version 4.1.3
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
aggr(housing.data,
     col= c('green', 'red'),
     numbers = TRUE, 
     sortVars = TRUE,
     labels = names(housing.data),
     cex.axis = 0.75,
     gap = 1,
     ylab = c("Histograma de NAs", "Patrón")
)   

## 
##  Variables sorted by number of missings: 
##  Variable      Count
##   ptratio 0.07905138
##         X 0.00000000
##      crim 0.00000000
##        zn 0.00000000
##     indus 0.00000000
##      chas 0.00000000
##       nox 0.00000000
##        rm 0.00000000
##       age 0.00000000
##       dis 0.00000000
##       tax 0.00000000
##         b 0.00000000
##     lstat 0.00000000
##      medv 0.00000000