library(Deriv)\[\int{ 4e^{-7x} dx}\]
pull out the coefficient
\(4\int{ e^{-7x} dx}\)
\(u=-7x\)
take the derivative of u
\(\frac{du}{dx}=-7\)
integrate “back”, note e to any exponent changes at a rate equal to itself
\(\int{e^u \ du} = e^u\)
pull out 4 and \(\frac{1}{7}\) under the constant or linearity rule
\[\int{ 4e^{-7x} dx} \ = \frac{-4}{7} e^{-7x} + C\]
2.Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt} = - \frac{3150}{t^4} -220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began.
Find a function N( t ) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
extract out the coefficient, integrate the denominator
\[\int{\frac{-3150}{t^4} -220 } \ dx \ = 3150 \int{\frac{1}{t^4} -220 } \ dx \ = 3150 \int{t^{-4} -220 } \ dx \ = \ 3150*\frac{t^{-3}}{-3} - 200x \ = \ \frac{1050}{x^3}\]
By invoking this function with x=1 we can deduce the value of C
# rate_func<-function(x) { 3150/x^4 - 220 }
f1<-function(x) { return((1050/x^3) - 220*x) }
C<-6530 - f1(1)
print(paste("C = ", C))## [1] "C = 5700"
Add 5700 to the function and plot …
f2<-function(x) { return((1050/x^3) - 220*x + 5700) }
x<-seq(from=1, to=15)
plot(x,f2(x),type='l', xlab="days", ylab="Contamination", title="Contamination Level")Find the area of the region bounded by the graphs of the given equations.
calc_area<-function(x,interval){ return((2*x-9)*interval) }
interval<-1
sum(calc_area(seq(5,8),interval))## [1] 16
this is is the sum of discrete values…
\[\sum_{x=5}^{x=8} 2x-9\]
apparently its the same when you do it as a continuous distribution
interval<-.001
sum(calc_area(seq(4.5,8.5,by=interval),interval))
integrand<-function(x){ return(2*x-9) }
integrate(integrand, lower = 4.5, upper = 8.5)## [1] 16.004
## 16 with absolute error < 1.8e-13
\[y = x + 2\]
Set up the functions…
f1<-function(x) { x^2-2*x-2 }
f2<-function(x) { x+2 }
x<-seq(from=-6, to=6)
plot(x,f1(x),type='l')
lines(x,f2(x),type='l')
abline(h=0, col="blue")The curves intercept at (-1,1) and (4,6) so we need to solve
\[\int_{-1}^4 ( f(x) -g(x) ) \ dx\]
Where f(x) is the “above” curve, in this case its the line so
\[\int_{-1}^4 (x+2) \ dx - \int_{-1}^4 x^2-2x-2 \ dx\]
int1<-integrate(f1, lower = -1, upper = 4)
int2<-integrate(f2, lower = -1, upper = 4)
print(paste("The area is ", int2$value-int1$value))## [1] "The area is 20.8333333333333"
Im not clear whats being asked because usually an optimization problem involves opposite factors of different degrees. If i create a function of x where x is inventory bought minus expected sales of 110 per year, and square it, I have a somewhat realistic parabola …
f1<-function(x) { (x-110)^2 -8.25*x + 1100 }
f1_prime<-Deriv(f1)
minimum_inventory<-uniroot(f1_prime, lower=0, upper=50, extendInt="yes")$root
title<-paste("Minimum Inventory Cost = ", minimum_inventory)
x<-seq(from=100, to=150)
plot(x,f1(x),type='l', ylim = c(0,500), title=title)print(title)## [1] "Minimum Inventory Cost = 114.125"
\[\int \ ln(9x) \ x^6 \ dx\]
\(u=ln(x)\) \(du=\frac{1}{x}\) \(dv=x^6 \ dx\) \(v=\frac{x^7}{7}=\frac{1}{7}x^7\)
plug in
\[\int{u \ dv} = uv \ - \ \int{v} \ du\]
uv is …
\[\frac{ln(9x) x^7}{7}\]
\(\int{v} \ du\) is …
\[\frac{1}{7}\int{x^7} \ = \frac{x^7}{49}\]
Multiply uv by \(\frac{7}{7}\) to get the final answer
\[\frac{x^7 (7ln(9x)-1)}{49} +C\]
If not, determine the value of the definite integral
\[f(x) \ = \ \frac{1}{6x}\]
f1<-function(x) { 1/(6*x) }
e<-exp(1)
integrate(f1, lower = 1, upper = e^6)## 1 with absolute error < 9.3e-05
It could be a probability distribution within that interval.
x<-seq(from=1, to=e^6)
plot(x,f1(x),type='l')
abline(h=0, col="blue")But only on that interval. Values less than 1 wont work.
x<-seq(from=-200, to=e^6, by=.1)
plot(x,f1(x),type='l', ylim = c(-2,2))
abline(h=0, col="blue")