library(readxl)
Datos_Uchuva <- read_excel("C:/Users/luisc/Downloads/Datos Uchuva.xlsx", 
    sheet = "31.03 muestreo 2")
## New names:
## * L -> L...8
## * a -> a...9
## * b -> b...10
## * L -> L...12
## * a -> a...13
## * ...
View(Datos_Uchuva)

Anova para firmeza 2

m1 <- aov(firmeza_2~Trat, data = Datos_Uchuva)
anova(m1)
## Analysis of Variance Table
## 
## Response: firmeza_2
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       2 0.6663 0.33313  0.2184 0.8099
## Residuals  6 9.1519 1.52531
#Prueba de normalidad 

shapiro.test(resid(m1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m1)
## W = 0.95761, p-value = 0.7731
boxplot(Datos_Uchuva$firmeza_2)

library(car)
## Loading required package: carData
library(carData)
#Prueba de homogeneidad de varianza tambien homocedasticidad

leveneTest(Datos_Uchuva$firmeza_2~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  1.9421 0.2237
##        6
library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
m1Tukey <-HSD.test(Datos_Uchuva$firmeza_2, Datos_Uchuva$Trat, 6, 1.52531, alpha = 0.05)
m1Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##   1.52531  6 5.023494 24.58517 3.094052
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         4.339195  0.05
## 
## $means
##   Datos_Uchuva$firmeza_2       std r    Min     Max     Q25    Q50      Q75
## C               5.041117 1.8034020 3 3.0627 6.59305 4.26515 5.4676 6.030325
## E               5.347567 0.9196244 3 4.2857 5.88470 5.07900 5.8723 5.878500
## M               4.681800 0.6913501 3 4.2086 5.47520 4.28510 4.3616 4.918400
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$firmeza_2 groups
## E               5.347567      a
## C               5.041117      a
## M               4.681800      a
## 
## attr(,"class")
## [1] "group"
m9LSD <- LSD.test(Datos_Uchuva$firmeza_2, Datos_Uchuva$Trat, 6, 1.52531, alpha = 0.05)
m9LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##   1.52531  6 5.023494 24.58517 2.446912 2.467469
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$firmeza_2       std r      LCL      UCL    Min     Max     Q25
## C               5.041117 1.8034020 3 3.296352 6.785881 3.0627 6.59305 4.26515
## E               5.347567 0.9196244 3 3.602802 7.092331 4.2857 5.88470 5.07900
## M               4.681800 0.6913501 3 2.937036 6.426564 4.2086 5.47520 4.28510
##      Q50      Q75
## C 5.4676 6.030325
## E 5.8723 5.878500
## M 4.3616 4.918400
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$firmeza_2 groups
## E               5.347567      a
## C               5.041117      a
## M               4.681800      a
## 
## attr(,"class")
## [1] "group"
#Peso fresco

m2 <- aov(PP~Trat, data = Datos_Uchuva)
anova(m2)
## Analysis of Variance Table
## 
## Response: PP
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       2  96.229  48.114  1.3229 0.3342
## Residuals  6 218.227  36.371
shapiro.test(resid(m2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m2)
## W = 0.93132, p-value = 0.494
leveneTest(Datos_Uchuva$PP~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)  
## group  2  4.0668 0.0765 .
##        6                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m2Tukey <-HSD.test(Datos_Uchuva$PP, Datos_Uchuva$Trat, 6, 36.371, alpha = 0.05)
m2Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    36.371  6 28.99325 20.80083 15.10867
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         4.339195  0.05
## 
## $means
##   Datos_Uchuva$PP      std r      Min      Max      Q25      Q50      Q75
## C        30.86802 2.113468 3 29.23729 33.25574 29.67416 30.11104 31.68339
## E        24.39499 4.639277 3 19.92019 29.18288 22.00104 24.08190 26.63239
## M        31.71674 9.117240 3 25.53050 42.18698 26.48163 27.43275 34.80987
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$PP groups
## M        31.71674      a
## C        30.86802      a
## E        24.39499      a
## 
## attr(,"class")
## [1] "group"
m9LSD <- LSD.test(Datos_Uchuva$PP, Datos_Uchuva$Trat, 6, 36.371, alpha = 0.05)
m9LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##    36.371  6 28.99325 20.80083 2.446912 12.04898
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$PP      std r      LCL      UCL      Min      Max      Q25
## C        30.86802 2.113468 3 22.34810 39.38794 29.23729 33.25574 29.67416
## E        24.39499 4.639277 3 15.87507 32.91490 19.92019 29.18288 22.00104
## M        31.71674 9.117240 3 23.19683 40.23666 25.53050 42.18698 26.48163
##        Q50      Q75
## C 30.11104 31.68339
## E 24.08190 26.63239
## M 27.43275 34.80987
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$PP groups
## M        31.71674      a
## C        30.86802      a
## E        24.39499      a
## 
## attr(,"class")
## [1] "group"
m10duncan <- duncan.test(Datos_Uchuva$PP, Datos_Uchuva$Trat, 6, 36.371, alpha = 0.05)
m10duncan
## $statistics
##   MSerror Df     Mean       CV
##    36.371  6 28.99325 20.80083
## 
## $parameters
##     test            name.t ntr alpha
##   Duncan Datos_Uchuva$Trat   3  0.05
## 
## $duncan
##      Table CriticalRange
## 2 3.460456      12.04898
## 3 3.586498      12.48785
## 
## $means
##   Datos_Uchuva$PP      std r      Min      Max      Q25      Q50      Q75
## C        30.86802 2.113468 3 29.23729 33.25574 29.67416 30.11104 31.68339
## E        24.39499 4.639277 3 19.92019 29.18288 22.00104 24.08190 26.63239
## M        31.71674 9.117240 3 25.53050 42.18698 26.48163 27.43275 34.80987
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$PP groups
## M        31.71674      a
## C        30.86802      a
## E        24.39499      a
## 
## attr(,"class")
## [1] "group"
#indice de color

m3 <- aov(indice_color_1~Trat, data = Datos_Uchuva)
anova(m3)
## Analysis of Variance Table
## 
## Response: indice_color_1
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       2 0.38073 0.19037  1.4611 0.3041
## Residuals  6 0.78175 0.13029
shapiro.test(resid(m3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m3)
## W = 0.96978, p-value = 0.8929
leveneTest(Datos_Uchuva$indice_color_1~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  0.8469 0.4743
##        6
m3Tukey <-HSD.test(Datos_Uchuva$indice_color_1, Datos_Uchuva$Trat, 6, 0.13029, alpha = 0.05)
m3Tukey
## $statistics
##   MSerror Df     Mean       CV       MSD
##   0.13029  6 4.641844 7.776157 0.9042825
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         4.339195  0.05
## 
## $means
##   Datos_Uchuva$indice_color_1       std r      Min      Max      Q25      Q50
## C                    4.650059 0.1938381 3 4.532306 4.873780 4.538198 4.544089
## E                    4.889539 0.4762203 3 4.378172 5.320332 4.674143 4.970115
## M                    4.385934 0.3556890 3 4.032339 4.743680 4.207060 4.381781
##        Q75
## C 4.708935
## E 5.145223
## M 4.562731
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$indice_color_1 groups
## E                    4.889539      a
## C                    4.650059      a
## M                    4.385934      a
## 
## attr(,"class")
## [1] "group"
m91LSD <- LSD.test(Datos_Uchuva$indice_color_1, Datos_Uchuva$Trat, 6, 36.371, alpha = 0.05)
m91LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##    36.371  6 4.641844 129.9233 2.446912 12.04898
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$indice_color_1       std r       LCL      UCL      Min      Max
## C                    4.650059 0.1938381 3 -3.869857 13.16997 4.532306 4.873780
## E                    4.889539 0.4762203 3 -3.630377 13.40946 4.378172 5.320332
## M                    4.385934 0.3556890 3 -4.133983 12.90585 4.032339 4.743680
##        Q25      Q50      Q75
## C 4.538198 4.544089 4.708935
## E 4.674143 4.970115 5.145223
## M 4.207060 4.381781 4.562731
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$indice_color_1 groups
## E                    4.889539      a
## C                    4.650059      a
## M                    4.385934      a
## 
## attr(,"class")
## [1] "group"
m92duncan <- duncan.test(Datos_Uchuva$indice_color_1, Datos_Uchuva$Trat, 6, 36.371, alpha = 0.05)
m92duncan
## $statistics
##   MSerror Df     Mean       CV
##    36.371  6 4.641844 129.9233
## 
## $parameters
##     test            name.t ntr alpha
##   Duncan Datos_Uchuva$Trat   3  0.05
## 
## $duncan
##      Table CriticalRange
## 2 3.460456      12.04898
## 3 3.586498      12.48785
## 
## $means
##   Datos_Uchuva$indice_color_1       std r      Min      Max      Q25      Q50
## C                    4.650059 0.1938381 3 4.532306 4.873780 4.538198 4.544089
## E                    4.889539 0.4762203 3 4.378172 5.320332 4.674143 4.970115
## M                    4.385934 0.3556890 3 4.032339 4.743680 4.207060 4.381781
##        Q75
## C 4.708935
## E 5.145223
## M 4.562731
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$indice_color_1 groups
## E                    4.889539      a
## C                    4.650059      a
## M                    4.385934      a
## 
## attr(,"class")
## [1] "group"
#indice de color 2

m4 <- aov(indice_color_2~Trat, data = Datos_Uchuva)
anova(m4)
## Analysis of Variance Table
## 
## Response: indice_color_2
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trat       2 1.6515 0.82576  2.4817 0.1639
## Residuals  6 1.9964 0.33274
shapiro.test(resid(m4))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m4)
## W = 0.94808, p-value = 0.669
leveneTest(Datos_Uchuva$indice_color_2~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  2.4842 0.1637
##        6
m4Tukey <-HSD.test(Datos_Uchuva$indice_color_2, Datos_Uchuva$Trat, 6, 0.33274, alpha = 0.05)
m4Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##   0.33274  6 5.529335 10.43229 1.445111
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         4.339195  0.05
## 
## $means
##   Datos_Uchuva$indice_color_2       std r      Min      Max      Q25      Q50
## C                    6.067338 0.4708115 3 5.560142 6.490429 5.855792 6.151442
## E                    5.501516 0.8316949 3 4.557937 6.128095 5.188227 5.818517
## M                    5.019149 0.2912640 3 4.794797 5.348315 4.854567 4.914337
##        Q75
## C 6.320935
## E 5.973306
## M 5.131326
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$indice_color_2 groups
## C                    6.067338      a
## E                    5.501516      a
## M                    5.019149      a
## 
## attr(,"class")
## [1] "group"
m91LSD <- LSD.test(Datos_Uchuva$indice_color_2, Datos_Uchuva$Trat, 6, 0.33274, alpha = 0.05)
m91LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##   0.33274  6 5.529335 10.43229 2.446912 1.152458
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$indice_color_2       std r      LCL      UCL      Min      Max
## C                    6.067338 0.4708115 3 5.252427 6.882249 5.560142 6.490429
## E                    5.501516 0.8316949 3 4.686605 6.316428 4.557937 6.128095
## M                    5.019149 0.2912640 3 4.204238 5.834061 4.794797 5.348315
##        Q25      Q50      Q75
## C 5.855792 6.151442 6.320935
## E 5.188227 5.818517 5.973306
## M 4.854567 4.914337 5.131326
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$indice_color_2 groups
## C                    6.067338      a
## E                    5.501516      a
## M                    5.019149      a
## 
## attr(,"class")
## [1] "group"
m92duncan <- duncan.test(Datos_Uchuva$indice_color_2, Datos_Uchuva$Trat, 6, 0.33274, alpha = 0.05)
m92duncan
## $statistics
##   MSerror Df     Mean       CV
##   0.33274  6 5.529335 10.43229
## 
## $parameters
##     test            name.t ntr alpha
##   Duncan Datos_Uchuva$Trat   3  0.05
## 
## $duncan
##      Table CriticalRange
## 2 3.460456      1.152458
## 3 3.586498      1.194435
## 
## $means
##   Datos_Uchuva$indice_color_2       std r      Min      Max      Q25      Q50
## C                    6.067338 0.4708115 3 5.560142 6.490429 5.855792 6.151442
## E                    5.501516 0.8316949 3 4.557937 6.128095 5.188227 5.818517
## M                    5.019149 0.2912640 3 4.794797 5.348315 4.854567 4.914337
##        Q75
## C 6.320935
## E 5.973306
## M 5.131326
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$indice_color_2 groups
## C                    6.067338      a
## E                    5.501516      a
## M                    5.019149      a
## 
## attr(,"class")
## [1] "group"
#titulacion

m5 <- aov(ATT_2~Trat, data = Datos_Uchuva)
anova(m5)
## Analysis of Variance Table
## 
## Response: ATT_2
##           Df  Sum Sq  Mean Sq F value Pr(>F)
## Trat       2 0.11596 0.057979  1.2435 0.3533
## Residuals  6 0.27975 0.046625
shapiro.test(resid(m5))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m5)
## W = 0.93952, p-value = 0.5768
leveneTest(Datos_Uchuva$ATT_2~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  1.4879 0.2987
##        6
m5Tukey <-HSD.test(Datos_Uchuva$ATT_2, Datos_Uchuva$Trat, 6, 0.046625, alpha = 0.05)
m5Tukey
## $statistics
##    MSerror Df     Mean       CV       MSD
##   0.046625  6 1.884057 11.46081 0.5409511
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         4.339195  0.05
## 
## $means
##   Datos_Uchuva$ATT_2       std r      Min      Max      Q25      Q50      Q75
## C           1.829720 0.1328579 3 1.681569 1.938286 1.775438 1.869307 1.903796
## E           1.780413 0.2473782 3 1.495327 1.938462 1.701389 1.907451 1.922956
## M           2.042038 0.2470401 3 1.896296 2.327273 1.899421 1.902545 2.114909
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$ATT_2 groups
## M           2.042038      a
## C           1.829720      a
## E           1.780413      a
## 
## attr(,"class")
## [1] "group"
m10LSD <- LSD.test(Datos_Uchuva$ATT_2, Datos_Uchuva$Trat, 6, 0.046625, alpha = 0.05)
m10LSD
## $statistics
##    MSerror Df     Mean       CV  t.value      LSD
##   0.046625  6 1.884057 11.46081 2.446912 0.431402
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$ATT_2       std r      LCL      UCL      Min      Max      Q25
## C           1.829720 0.1328579 3 1.524673 2.134768 1.681569 1.938286 1.775438
## E           1.780413 0.2473782 3 1.475366 2.085460 1.495327 1.938462 1.701389
## M           2.042038 0.2470401 3 1.736991 2.347085 1.896296 2.327273 1.899421
##        Q50      Q75
## C 1.869307 1.903796
## E 1.907451 1.922956
## M 1.902545 2.114909
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$ATT_2 groups
## M           2.042038      a
## C           1.829720      a
## E           1.780413      a
## 
## attr(,"class")
## [1] "group"
#solidos solubles totales

m6 <- aov(SST_2~Trat, data = Datos_Uchuva)
anova(m6)
## Analysis of Variance Table
## 
## Response: SST_2
##           Df  Sum Sq Mean Sq F value  Pr(>F)  
## Trat       2 11.6348  5.8174    4.79 0.05712 .
## Residuals  6  7.2869  1.2145                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m7 <- kruskal.test(Datos_Uchuva$SST_2, Datos_Uchuva$Trat, alpha = 0.05)
m7
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Datos_Uchuva$SST_2 and Datos_Uchuva$Trat
## Kruskal-Wallis chi-squared = 5.9556, df = 2, p-value = 0.05091
shapiro.test(resid(m6))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m6)
## W = 0.86219, p-value = 0.1013
leveneTest(Datos_Uchuva$SST_2~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  3.0234 0.1235
##        6
m6Tukey <-HSD.test(Datos_Uchuva$SST_2, Datos_Uchuva$Trat, 6, 1.2145, alpha = 0.05)
m6Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    1.2145  6 14.00889 7.866745 2.760879
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         4.339195  0.05
## 
## $means
##   Datos_Uchuva$SST_2       std r   Min  Max   Q25  Q50   Q75
## C           14.19333 1.3304636 3 13.18 15.7 13.44 13.7 14.70
## E           12.53333 0.4041452 3 12.10 12.9 12.35 12.6 12.75
## M           15.30000 1.3076697 3 14.40 16.8 14.55 14.7 15.75
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$SST_2 groups
## M           15.30000      a
## C           14.19333     ab
## E           12.53333      b
## 
## attr(,"class")
## [1] "group"
m6LSD <- LSD.test(Datos_Uchuva$SST_2, Datos_Uchuva$Trat, 6, 1.2145, alpha = 0.05)
m6LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##    1.2145  6 14.00889 7.866745 2.446912 2.201767
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$SST_2       std r      LCL      UCL   Min  Max   Q25  Q50   Q75
## C           14.19333 1.3304636 3 12.63645 15.75022 13.18 15.7 13.44 13.7 14.70
## E           12.53333 0.4041452 3 10.97645 14.09022 12.10 12.9 12.35 12.6 12.75
## M           15.30000 1.3076697 3 13.74312 16.85688 14.40 16.8 14.55 14.7 15.75
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$SST_2 groups
## M           15.30000      a
## C           14.19333     ab
## E           12.53333      b
## 
## attr(,"class")
## [1] "group"
m11 <- aov(Indice_respiracion_2~Trat, data = Datos_Uchuva)
anova(m11)
## Warning in anova.lm(m11): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: Indice_respiracion_2
##           Df Sum Sq Mean Sq    F value    Pr(>F)    
## Trat       2  690.6   345.3 4.4608e+30 < 2.2e-16 ***
## Residuals  6    0.0     0.0                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m97 <- kruskal.test(Datos_Uchuva$Indice_respiracion_2, Datos_Uchuva$Trat, alpha = 0.05)
m97
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Datos_Uchuva$Indice_respiracion_2 and Datos_Uchuva$Trat
## Kruskal-Wallis chi-squared = 8, df = 2, p-value = 0.01832
shapiro.test(resid(m11))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m11)
## W = 0.736, p-value = 0.003729
leveneTest(Datos_Uchuva$Indice_respiracion_2~Datos_Uchuva$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2     NaN    NaN
##        6
m11LSD <- LSD.test(Datos_Uchuva$Indice_respiracion_2, Datos_Uchuva$Trat, 2, 0.3679, alpha = 0.05)
m11LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##    0.3679  2 47.80867 1.268698 4.302653 2.130863
## 
## $parameters
##         test p.ajusted            name.t ntr alpha
##   Fisher-LSD      none Datos_Uchuva$Trat   3  0.05
## 
## $means
##   Datos_Uchuva$Indice_respiracion_2 std r      LCL      UCL    Min    Max
## C                            42.787   0 3 41.28025 44.29375 42.787 42.787
## E                            40.512   0 3 39.00525 42.01875 40.512 40.512
## M                            60.127   0 3 58.62025 61.63375 60.127 60.127
##      Q25    Q50    Q75
## C 42.787 42.787 42.787
## E 40.512 40.512 40.512
## M 60.127 60.127 60.127
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$Indice_respiracion_2 groups
## M                            60.127      a
## C                            42.787      b
## E                            40.512      c
## 
## attr(,"class")
## [1] "group"
m1Tukey <-HSD.test(Datos_Uchuva$Indice_respiracion_2, Datos_Uchuva$Trat, 2, 0.3679, alpha = 0.05)
m1Tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##    0.3679  2 47.80867 1.268698 2.91736
## 
## $parameters
##    test            name.t ntr StudentizedRange alpha
##   Tukey Datos_Uchuva$Trat   3         8.330783  0.05
## 
## $means
##   Datos_Uchuva$Indice_respiracion_2 std r    Min    Max    Q25    Q50    Q75
## C                            42.787   0 3 42.787 42.787 42.787 42.787 42.787
## E                            40.512   0 3 40.512 40.512 40.512 40.512 40.512
## M                            60.127   0 3 60.127 60.127 60.127 60.127 60.127
## 
## $comparison
## NULL
## 
## $groups
##   Datos_Uchuva$Indice_respiracion_2 groups
## M                            60.127      a
## C                            42.787      b
## E                            40.512      b
## 
## attr(,"class")
## [1] "group"

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.