Ecuaciones - Formulas - Sintaxis y comandos LaTeX

Superíndice - Potencia

\[ e=mc^2 \]


\[ a^2 + b^2 = c^2 \]


Subíndice

\[ H_2O \]


\[ NH_3 \]

Fracciones - Casos - ejemplos

\[ \frac{1}{2} \]

\[ \frac{5}{6} + \frac{1}{2} \]

\[ \frac{1}{2} - \frac{8}{9} \]

\[ \frac{1}{2} \times \frac{4}{5} \]

\[ \frac{1}{2} \cdot \frac{4}{5} \]

\[ \frac{1}{2} \div \frac{4}{5} \]

\[ (\frac{1}{2}) \]

\[ \left(\frac{1}{2}\right)^2 \]

Dada la fracción \(\frac{1}{2}\) podemos determinar el valor de la variable ….

Dada la fracción \(\tfrac{1}{2}\) podemos determinar el valor de la variable …

Dada la fracción \(\dfrac{1}{2}\) podemos determinar el valor de la variable…

Raíces

\[ \sqrt{2} = 1.412123 \]

\[ \sqrt{3} = 1.732545 \]

\[ \sqrt{4} = 2 \]

Sumatoria

\[ \sum_{i=1}^{5}2i \]

\[ \sum_{i=3}^{6}2i-1 \]

\[ \sum_{i=3}^{6}\frac{2i-1}{i(i+1)} \]

Logaritmos

\[ \log_7{49}=2 \]

\[ \log_6{216}=3 \]

\[ \log_3{81}=4 \]

Matrices

\[ \begin{matrix} 1 & 8 & 19\\ 18& 9 & 10\\ 1 & 3 & 5 \end{matrix} \]

\[ \begin{pmatrix} 1 & 8 & 19\\ 18& 9 & 10\\ 1 & 3 & 5 \end{pmatrix} \]

\[ \begin{bmatrix} 1 & 8 & 19\\ 18& 9 & 10\\ 1 & 3 & 5 \end{bmatrix} \]

\[ \begin{Bmatrix} 1 & 8 & 19\\ 18& 9 & 10\\ 1 & 3 & 5 \end{Bmatrix} \]

\[ \begin{vmatrix} 1 & 8 & 19\\ 18& 9 & 10\\ 1 & 3 & 5 \end{vmatrix} \]

\[ \begin{Vmatrix} 1 & 8 & 19\\ 18& 9 & 10\\ 1 & 3 & 5 \end{Vmatrix} \]

Ecuaciones

Dada la función

\[ \begin{equation} f(x) = y \end{equation} \]

podemos determinar el valor de la variable

\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]

\[ \begin{equation} x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \end{equation} \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIC0gQ29tYW5kb3MgTGFUZVgiDQpzdWJ0aXRsZTogIkxhVGVYIC0gTWFya2Rvd24iDQphdXRob3I6ICJDaW50aGlhIEthdGhlcnluIg0KZGF0ZTogIjIzLzA0LzIwMjIiDQpvdXRwdXQ6DQogaHRtbF9kb2N1bWVudDoNCiAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIEHDsWFkaXIgZWN1YWNpb25lcyB5IGbDs3JtdWxhcyBlbiBNYXJrZG93biBoYWNpZW5kbyB1c28gZGUgTGFUZVggLS0+DQoNCiMgRWN1YWNpb25lcyAtIEZvcm11bGFzIC0gU2ludGF4aXMgeSBjb21hbmRvcyBMYVRlWA0KDQojIyBTdXBlcsOtbmRpY2UgLSBQb3RlbmNpYQ0KDQokJA0KZT1tY14yDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KJCQNCmFeMiArIGJeMiA9IGNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIFN1YsOtbmRpY2UNCg0KJCQNCkhfMk8NCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KTkhfMw0KJCQNCg0KIyMgRnJhY2Npb25lcyAtIENhc29zIC0gZWplbXBsb3MNCg0KJCQNClxmcmFjezF9ezJ9DQokJA0KDQokJA0KXGZyYWN7NX17Nn0gKyBcZnJhY3sxfXsyfQ0KJCQNCg0KJCQNClxmcmFjezF9ezJ9IC0gXGZyYWN7OH17OX0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSBcdGltZXMgXGZyYWN7NH17NX0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSBcY2RvdCBcZnJhY3s0fXs1fQ0KJCQNCg0KJCQNClxmcmFjezF9ezJ9IFxkaXYgXGZyYWN7NH17NX0NCiQkDQoNCiQkDQooXGZyYWN7MX17Mn0pDQokJA0KDQokJA0KXGxlZnQoXGZyYWN7MX17Mn1ccmlnaHQpXjINCiQkDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZnJhY3sxfXsyfSQgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlIC4uLi4NCg0KRGFkYSBsYSBmcmFjY2nDs24gJFx0ZnJhY3sxfXsyfSQgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlIC4uLg0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXGRmcmFjezF9ezJ9JCBwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUuLi4NCg0KIyMgUmHDrWNlcw0KDQokJA0KXHNxcnR7Mn0gPSAxLjQxMjEyMw0KJCQNCg0KJCQNClxzcXJ0ezN9ID0gMS43MzI1NDUNCiQkDQoNCiQkDQpcc3FydHs0fSA9IDINCiQkDQoNCiMjIFN1bWF0b3JpYQ0KDQokJA0KXHN1bV97aT0xfV57NX0yaQ0KJCQNCg0KJCQNClxzdW1fe2k9M31eezZ9MmktMQ0KJCQNCg0KJCQNClxzdW1fe2k9M31eezZ9XGZyYWN7MmktMX17aShpKzEpfQ0KJCQNCg0KIyMgTG9nYXJpdG1vcw0KDQokJA0KXGxvZ183ezQ5fT0yDQokJA0KDQokJA0KXGxvZ182ezIxNn09Mw0KJCQNCg0KJCQNClxsb2dfM3s4MX09NA0KJCQNCg0KIyMgTWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQoxICYgOCAmIDE5XFwNCjE4JiA5ICYgMTBcXA0KMSAmIDMgJiA1DQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEgJiA4ICYgMTlcXA0KMTgmIDkgJiAxMFxcDQoxICYgMyAmIDUNClxlbmR7cG1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Ym1hdHJpeH0NCjEgJiA4ICYgMTlcXA0KMTgmIDkgJiAxMFxcDQoxICYgMyAmIDUNClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjEgJiA4ICYgMTlcXA0KMTgmIDkgJiAxMFxcDQoxICYgMyAmIDUNClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEgJiA4ICYgMTlcXA0KMTgmIDkgJiAxMFxcDQoxICYgMyAmIDUNClxlbmR7dm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Vm1hdHJpeH0NCjEgJiA4ICYgMTlcXA0KMTgmIDkgJiAxMFxcDQoxICYgMyAmIDUNClxlbmR7Vm1hdHJpeH0NCiQkDQoNCiMjIEVjdWFjaW9uZXMNCg0KRGFkYSBsYSBmdW5jacOzbg0KDQokJA0KXGJlZ2lue2VxdWF0aW9ufQ0KZih4KSA9IHkNClxlbmR7ZXF1YXRpb259DQokJA0KDQpwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUNCg0KJCQNCnggPSBcZnJhY3stYiBccG0gXHNxcnR7Yl4yLTRhY319ezJhfQ0KJCQNCg0KJCQNClxiZWdpbntlcXVhdGlvbn0NCnggPSBcZnJhY3stYiBccG0gXHNxcnR7Yl4yLTRhY319ezJhfQ0KXGVuZHtlcXVhdGlvbn0NCiQkDQo=