(a) Generate a data set with n = 500 and p = 2, such that the observations belong to two classes with a quadratic decision boundary between them.
set.seed(1)
x1=runif (500) -0.5
x2=runif (500) -0.5
y=1*(x1^2-x2^2 > 0)
(b) Plot the observations, colored according to their class labels.
plot(x1, x2, col = (3-y))
(c) Fit a logistic regression model to the data, using X1 and X2
as predictors.
log.fit <- glm(y ~ x1 + x2, family = "binomial")
(d) Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be linear.
data <- data.frame(x1 = x1, x2 = x2, y = y)
probs <- predict(log.fit, data, type = "response")
preds <- rep(0, 500)
preds[probs > 0.5] <- 1
plot(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1))
points(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0))
(e) Now fit a logistic regression model to the data using
non-linear functions of X1 and X2 as predictors
log_nl.fit <- glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), family = "binomial")
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
(f) Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels.
probs <- predict(log_nl.fit, data, type = "response")
preds <- rep(0, 500)
preds[probs > 0.5] <- 1
plot(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1))
points(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0))
(g) Fit a support vector classifier to the data with X1 and X2
as predictors. Obtain a class prediction for each training observation.
Plot the observations, colored according to the predicted class
labels
data$y <- as.factor(data$y)
library(e1071)
## Warning: package 'e1071' was built under R version 4.1.2
svmfit=svm(y~., data=data, kernel="linear", gamma=1, cost=1)
plot(svmfit, data)
(h) Fit a SVM using a non-linear kernel to the data. Obtain a
class prediction for each training observation. Plot the observations,
colored according to the predicted class labels.
svmfit=svm(y~., data=data, kernel="radial", gamma=1, cost=1)
plot(svmfit, data)
(i) Comment on your results.
(a) Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
library(ISLR)
mpg.var <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
Auto$mpg <- as.factor(mpg.var)
(b) Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results.
tune.out <- tune(svm, mpg ~ ., data = Auto, kernel = "linear", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100, 1000)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.01
##
## - best performance: 0.08679487
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-02 0.08679487 0.04867313
## 2 1e-01 0.08942308 0.04889872
## 3 1e+00 0.10198718 0.05097706
## 4 5e+00 0.10698718 0.05330111
## 5 1e+01 0.10705128 0.06351583
## 6 1e+02 0.10961538 0.05105094
## 7 1e+03 0.11217949 0.06494039
Looks like the error on the cost value 0.01 does the best.
(c) Now repeat (b), this time using SVMs with radial and
polynomial basis kernels, with different values of gamma and degree and
cost. Comment on your results.
tune.out <- tune(svm, mpg ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100), gamma = c(0.5, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost gamma
## 5 1
##
## - best performance: 0.07391026
##
## - Detailed performance results:
## cost gamma error dispersion
## 1 1e-02 0.5 0.54070513 0.03076812
## 2 1e-01 0.5 0.08666667 0.04364606
## 3 1e+00 0.5 0.07653846 0.02949678
## 4 5e+00 0.5 0.07397436 0.02819088
## 5 1e+01 0.5 0.08160256 0.03573688
## 6 1e+02 0.5 0.08673077 0.03456265
## 7 1e-02 1.0 0.54070513 0.03076812
## 8 1e-01 1.0 0.54070513 0.03076812
## 9 1e+00 1.0 0.07391026 0.04228832
## 10 5e+00 1.0 0.07391026 0.03693807
## 11 1e+01 1.0 0.07391026 0.03693807
## 12 1e+02 1.0 0.07391026 0.03693807
## 13 1e-02 5.0 0.54070513 0.03076812
## 14 1e-01 5.0 0.54070513 0.03076812
## 15 1e+00 5.0 0.46666667 0.07001247
## 16 5e+00 5.0 0.46666667 0.06680896
## 17 1e+01 5.0 0.46666667 0.06680896
## 18 1e+02 5.0 0.46666667 0.06680896
## 19 1e-02 10.0 0.54070513 0.03076812
## 20 1e-01 10.0 0.54070513 0.03076812
## 21 1e+00 10.0 0.49987179 0.05092898
## 22 5e+00 10.0 0.49730769 0.05499122
## 23 1e+01 10.0 0.49730769 0.05499122
## 24 1e+02 10.0 0.49730769 0.05499122
## 25 1e-02 100.0 0.54070513 0.03076812
## 26 1e-01 100.0 0.54070513 0.03076812
## 27 1e+00 100.0 0.54070513 0.03076812
## 28 5e+00 100.0 0.54070513 0.03076812
## 29 1e+01 100.0 0.54070513 0.03076812
## 30 1e+02 100.0 0.54070513 0.03076812
tune.out <- tune(svm, mpg ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100), degree = c(1,2,3)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost degree
## 100 1
##
## - best performance: 0.08705128
##
## - Detailed performance results:
## cost degree error dispersion
## 1 1e-02 1 0.56910256 0.03113623
## 2 1e-01 1 0.28576923 0.11269167
## 3 1e+00 1 0.10730769 0.04832576
## 4 5e+00 1 0.08961538 0.06661789
## 5 1e+01 1 0.08961538 0.06983016
## 6 1e+02 1 0.08705128 0.06317910
## 7 1e-02 2 0.56910256 0.03113623
## 8 1e-01 2 0.56910256 0.03113623
## 9 1e+00 2 0.56910256 0.03113623
## 10 5e+00 2 0.56910256 0.03113623
## 11 1e+01 2 0.55897436 0.03735346
## 12 1e+02 2 0.31397436 0.10024160
## 13 1e-02 3 0.56910256 0.03113623
## 14 1e-01 3 0.56910256 0.03113623
## 15 1e+00 3 0.56910256 0.03113623
## 16 5e+00 3 0.56910256 0.03113623
## 17 1e+01 3 0.56910256 0.03113623
## 18 1e+02 3 0.40294872 0.11585855
For the radial kernel, the best performance has a cost of 5 and a
gamma of .5. For the polynomial kernel, the best performance has a cost
of 100 and degree of 1.
(d) Make some plots to back up your assertions in (b) and
(c).
### 8. This problem involves the OJ data set which is part of the ISLR
package.
(a) Create a training set containing a random sample of 800
observations, and a test set containing the remaining
observations.
train <- sample(nrow(OJ), 800)
OJ.train <- OJ[train, ]
OJ.test <- OJ[-train, ]
(b) Fit a support vector classifier to the training data using cost=0.01, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics, and describe the results obtained.
svm.fit <- svm(Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
summary(svm.fit)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 0.01
##
## Number of Support Vectors: 431
##
## ( 216 215 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
There are 431 support vectors and 216 of them are for CH and the
others are for MM.
(c) What are the training and test error rates?
preds.train <- predict(svm.fit, OJ.train)
table(OJ.train$Purchase, preds.train)
## preds.train
## CH MM
## CH 423 64
## MM 68 245
(68+64)/800
## [1] 0.165
preds.test <- predict(svm.fit, OJ.test)
table(OJ.test$Purchase, preds.test)
## preds.test
## CH MM
## CH 144 22
## MM 24 80
(22+24)/270
## [1] 0.1703704
(d) Use the tune() function to select an optimal cost. Consider values in the range 0.01 to 10.
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = c(0.01, 0.1, 1, 5, 10)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 5
##
## - best performance: 0.16625
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01 0.17125 0.03910900
## 2 0.10 0.16750 0.04377975
## 3 1.00 0.16875 0.04497299
## 4 5.00 0.16625 0.03866254
## 5 10.00 0.16750 0.04048319
(e) Compute the training and test error rates using this new value for cost.
svm.fit <- svm(Purchase ~ ., data = OJ.train, kernel = "linear", cost = 5)
preds.train <- predict(svm.fit, OJ.train)
table(OJ.train$Purchase, preds.train)
## preds.train
## CH MM
## CH 428 59
## MM 70 243
(70+59)/800
## [1] 0.16125
preds.test <- predict(svm.fit, OJ.test)
table(OJ.test$Purchase, preds.test)
## preds.test
## CH MM
## CH 148 18
## MM 24 80
(24/18)/270
## [1] 0.004938272
(f) Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use the default value for gamma.
svm.fit <- svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = 1)
preds.train <- predict(svm.fit, OJ.train)
table(OJ.train$Purchase, preds.train)
## preds.train
## CH MM
## CH 443 44
## MM 71 242
(44+71)/800
## [1] 0.14375
preds.test <- predict(svm.fit, OJ.test)
table(OJ.test$Purchase, preds.test)
## preds.test
## CH MM
## CH 148 18
## MM 27 77
(27+18)/270
## [1] 0.1666667
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.1725
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01 0.39125 0.06615691
## 2 0.10 0.18625 0.02791978
## 3 1.00 0.17250 0.03322900
## 4 5.00 0.18125 0.03019037
## 5 10.00 0.18625 0.03087272
Well, luckily for me, the optimal cost is already 1, so I’m going to
skip the other steps.
(g) Repeat parts (b) through (e) using a support vector machine
with a polynomial kernel. Set degree=2.
svm.fit <- svm(Purchase ~ ., data = OJ.train, kernel = "polynomial", cost = 1, degree = 2)
preds.train <- predict(svm.fit, OJ.train)
table(OJ.train$Purchase, preds.train)
## preds.train
## CH MM
## CH 445 42
## MM 98 215
(98+42)/800
## [1] 0.175
preds.test <- predict(svm.fit, OJ.test)
table(OJ.test$Purchase, preds.test)
## preds.test
## CH MM
## CH 147 19
## MM 40 64
(40+19)/270
## [1] 0.2185185
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "polynomial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10), degree = c(2,3,4)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost degree
## 10 2
##
## - best performance: 0.17125
##
## - Detailed performance results:
## cost degree error dispersion
## 1 0.01 2 0.38875 0.04308019
## 2 0.10 2 0.32250 0.04281744
## 3 1.00 2 0.19750 0.03374743
## 4 5.00 2 0.17250 0.03717451
## 5 10.00 2 0.17125 0.04084609
## 6 0.01 3 0.37250 0.05458174
## 7 0.10 3 0.30000 0.05034602
## 8 1.00 3 0.20250 0.05645795
## 9 5.00 3 0.19000 0.04851976
## 10 10.00 3 0.19375 0.05179085
## 11 0.01 4 0.37250 0.05296750
## 12 0.10 4 0.32750 0.05916080
## 13 1.00 4 0.23500 0.05886661
## 14 5.00 4 0.19250 0.04866267
## 15 10.00 4 0.19500 0.05839283
svm.fit <- svm(Purchase ~ ., data = OJ.train, kernel = "polynomial", cost = 10, degree = 2)
table(OJ.train$Purchase, preds.train)
## preds.train
## CH MM
## CH 445 42
## MM 98 215
(98+42)/800
## [1] 0.175
preds.test <- predict(svm.fit, OJ.test)
table(OJ.test$Purchase, preds.test)
## preds.test
## CH MM
## CH 149 17
## MM 33 71
(33+17)/270
## [1] 0.1851852
Overall, the radial kernal performed the best.