library(readr)
library(igraph)
library(ergm)
library(network)
library(intergraph)
library(parallel)
library(latticeExtra)
panel_report_meta <- read_csv(url("https://raw.githubusercontent.com/chanyaaaa/WTO_panel_citation/master/panel_reports_meta.csv"))
panel_citation <- as.matrix(read_csv(url("https://raw.githubusercontent.com/chanyaaaa/WTO_panel_citation/master/panel_citation.csv"),
                           col_names = F))
colnames(panel_citation) <- panel_report_meta$dispute
rownames(panel_citation) <- panel_report_meta$dispute

shared_panels <- as.matrix(read_csv(url("https://raw.githubusercontent.com/chanyaaaa/WTO_panel_citation/master/shared_panels.csv"),
                          col_names = F))
colnames(shared_panels) <- panel_report_meta$dispute
rownames(shared_panels) <- panel_report_meta$dispute

shared_personnel <- as.matrix(read_csv(url("https://raw.githubusercontent.com/chanyaaaa/WTO_panel_citation/master/shared_personnel.csv"),
                          col_names = F))
colnames(shared_personnel) <- panel_report_meta$dispute
rownames(shared_personnel) <- panel_report_meta$dispute
wto_panel_net <- graph_from_adjacency_matrix(panel_citation, diag = F)
set.seed(123)
plot(wto_panel_net,
     vertex.size = 5,
     vertex.color = "red",
     vertex.label = V(wto_panel_net)$name,
     vertex.label.cex = .5,
     vertex.frame.color = NA,
     edge.arrow.size = 0.1,
     layout = layout.fruchterman.reingold,
)

shared_panels_net <- graph_from_adjacency_matrix(shared_panels, mode = "undirected", diag = F, weighted = T)
set.seed(123)
plot(shared_panels_net,
     vertex.size = 5,
     vertex.color = "red",
     vertex.label = V(shared_panels_net)$name,
     vertex.label.cex = .5,
     vertex.frame.color = NA,
     edge.width = E(shared_panels_net)$weight,
     layout = layout.fruchterman.reingold,
)

shared_personnel_net <- graph_from_adjacency_matrix(shared_personnel, mode = "undirected", diag = F, weighted = T)
set.seed(123)
plot(shared_personnel_net,
     vertex.size = 5,
     vertex.color = "red",
     vertex.label = V(shared_personnel_net)$name,
     vertex.label.cex = .5,
     vertex.frame.color = NA,
     edge.width = E(shared_personnel_net)$weight,
     layout = layout.fruchterman.reingold,
)

wto_panel_net <- asNetwork(wto_panel_net)
wto_panel_net %e% "shared_panel" <- shared_panels
wto_panel_net %e% "shared_personnel" <- shared_personnel

set.seed(123)
wto_panel_model.01 <- ergm(wto_panel_net ~ edges + gwesp(0.2, fixed = T), 
                           control=control.ergm(parallel= detectCores() -1, parallel.type="PSOCK"))
summary(wto_panel_model.01)
## Call:
## ergm(formula = wto_panel_net ~ edges + gwesp(0.2, fixed = T), 
##     control = control.ergm(parallel = detectCores() - 1, parallel.type = "PSOCK"))
## 
## Monte Carlo Maximum Likelihood Results:
## 
##                 Estimate Std. Error MCMC % z value Pr(>|z|)    
## edges           -3.72932    0.08107      0  -46.00   <1e-04 ***
## gwesp.fixed.0.2  0.92630    0.05891      0   15.72   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 16622  on 11990  degrees of freedom
##  Residual Deviance:  6415  on 11988  degrees of freedom
##  
## AIC: 6419  BIC: 6434  (Smaller is better. MC Std. Err. = 0.8602)
set.seed(123)
wto_panel_model.02 <- ergm(wto_panel_net ~ edges + gwesp(0.2, fixed = T) + edgecov(shared_panels), 
                           control=control.ergm(parallel= detectCores() -1, parallel.type="PSOCK"))
summary(wto_panel_model.02)
## Call:
## ergm(formula = wto_panel_net ~ edges + gwesp(0.2, fixed = T) + 
##     edgecov(shared_panels), control = control.ergm(parallel = detectCores() - 
##     1, parallel.type = "PSOCK"))
## 
## Monte Carlo Maximum Likelihood Results:
## 
##                       Estimate Std. Error MCMC % z value Pr(>|z|)    
## edges                 -3.74855    0.07900      0 -47.452   <1e-04 ***
## gwesp.fixed.0.2        0.91316    0.05648      0  16.169   <1e-04 ***
## edgecov.shared_panels  0.58843    0.08420      0   6.989   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 16622  on 11990  degrees of freedom
##  Residual Deviance:  6377  on 11987  degrees of freedom
##  
## AIC: 6383  BIC: 6406  (Smaller is better. MC Std. Err. = 0.6602)
set.seed(123)
wto_panel_model.03 <- ergm(wto_panel_net ~edges + gwesp(0.2, fixed = T) + edgecov(shared_panels) + edgecov(shared_personnel),
                           control=control.ergm(parallel= detectCores() -1, parallel.type="PSOCK"))
summary(wto_panel_model.03)
## Call:
## ergm(formula = wto_panel_net ~ edges + gwesp(0.2, fixed = T) + 
##     edgecov(shared_panels) + edgecov(shared_personnel), control = control.ergm(parallel = detectCores() - 
##     1, parallel.type = "PSOCK"))
## 
## Monte Carlo Maximum Likelihood Results:
## 
##                          Estimate Std. Error MCMC % z value Pr(>|z|)    
## edges                    -3.69239    0.10755      0 -34.330   <1e-04 ***
## gwesp.fixed.0.2           0.91313    0.06372      0  14.330   <1e-04 ***
## edgecov.shared_panels     0.60052    0.08740      0   6.871   <1e-04 ***
## edgecov.shared_personnel -0.02235    0.02463      0  -0.907    0.364    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 16622  on 11990  degrees of freedom
##  Residual Deviance:  6377  on 11986  degrees of freedom
##  
## AIC: 6385  BIC: 6415  (Smaller is better. MC Std. Err. = 0.8424)
wto_panel_model.01.gof <- gof(wto_panel_model.03, GOF = ~ model + triadcensus + odegree + idegree + espartners + distance)
wto_panel_model.02.gof <- gof(wto_panel_model.03, GOF = ~ model + triadcensus + odegree + idegree + espartners + distance)
wto_panel_model.03.gof <- gof(wto_panel_model.03, GOF = ~ model + triadcensus + odegree + idegree + espartners + distance)
plot(wto_panel_model.01.gof)

plot(wto_panel_model.02.gof)

plot(wto_panel_model.03.gof)

mcmc.diagnostics(wto_panel_model.01)
## Sample statistics summary:
## 
## Iterations = 139264:827392
## Thinning interval = 8192 
## Number of chains = 7 
## Sample size per chain = 85 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                   Mean    SD Naive SE Time-series SE
## edges           -4.588 71.76    2.942          6.564
## gwesp.fixed.0.2 -6.523 98.74    4.048          8.856
## 
## 2. Quantiles for each variable:
## 
##                   2.5%    25%    50%   75% 97.5%
## edges           -166.2 -45.50 -4.000 42.50 130.1
## gwesp.fixed.0.2 -226.2 -64.31 -4.995 59.91 179.7
## 
## 
## Are sample statistics significantly different from observed?
##                 edges gwesp.fixed.0.2 Overall (Chi^2)
## diff.      -4.5882353      -6.5230726              NA
## test stat. -0.7670676      -0.8116659       0.7387144
## P-val.      0.4430413       0.4169834       0.6924118
## 
## Sample statistics cross-correlations:
##                     edges gwesp.fixed.0.2
## edges           1.0000000       0.9850634
## gwesp.fixed.0.2 0.9850634       1.0000000
## 
## Sample statistics auto-correlation:
## Chain 1 
##                  edges gwesp.fixed.0.2
## Lag 0      1.000000000     1.000000000
## Lag 8192   0.541044066     0.549457689
## Lag 16384  0.190134518     0.229973331
## Lag 24576  0.044892469     0.061353619
## Lag 32768 -0.007505901     0.003766333
## Lag 40960 -0.026195327    -0.030599548
## Chain 2 
##                 edges gwesp.fixed.0.2
## Lag 0      1.00000000      1.00000000
## Lag 8192   0.64311484      0.63950033
## Lag 16384  0.44386737      0.45771196
## Lag 24576  0.20070946      0.22392535
## Lag 32768  0.02940063      0.05306157
## Lag 40960 -0.12242303     -0.11182385
## Chain 3 
##               edges gwesp.fixed.0.2
## Lag 0     1.0000000       1.0000000
## Lag 8192  0.5436563       0.4968077
## Lag 16384 0.3012825       0.2593121
## Lag 24576 0.2834614       0.2624314
## Lag 32768 0.2272395       0.2107273
## Lag 40960 0.1372958       0.1348736
## Chain 4 
##                edges gwesp.fixed.0.2
## Lag 0     1.00000000      1.00000000
## Lag 8192  0.69435561      0.69426770
## Lag 16384 0.47187112      0.45995140
## Lag 24576 0.29632041      0.30365677
## Lag 32768 0.15328748      0.14260939
## Lag 40960 0.02432548      0.04892741
## Chain 5 
##                 edges gwesp.fixed.0.2
## Lag 0      1.00000000      1.00000000
## Lag 8192   0.49270884      0.45845691
## Lag 16384  0.20745993      0.14443528
## Lag 24576  0.15811751      0.14430274
## Lag 32768  0.05424337      0.03005498
## Lag 40960 -0.03833745     -0.05308058
## Chain 6 
##                 edges gwesp.fixed.0.2
## Lag 0      1.00000000      1.00000000
## Lag 8192   0.59007101      0.57194822
## Lag 16384  0.29073569      0.30825233
## Lag 24576  0.16987113      0.18572464
## Lag 32768  0.11052792      0.10411776
## Lag 40960 -0.05117164     -0.06799422
## Chain 7 
##               edges gwesp.fixed.0.2
## Lag 0     1.0000000       1.0000000
## Lag 8192  0.6684125       0.6586543
## Lag 16384 0.5692664       0.5656573
## Lag 24576 0.4844374       0.4780437
## Lag 32768 0.3377173       0.3384555
## Lag 40960 0.2295567       0.2256378
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##          0.2094          0.3210 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##       0.8341221       0.7482092 
## Joint P-value (lower = worse):  0.2891277 .
## Chain 2 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##          0.8895          0.7941 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##       0.3737459       0.4271431 
## Joint P-value (lower = worse):  0.7828912 .
## Chain 3 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##           2.003           1.996 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##      0.04514348      0.04591024 
## Joint P-value (lower = worse):  0.4777455 .
## Chain 4 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##         -0.1693         -0.1324 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##       0.8655871       0.8946637 
## Joint P-value (lower = worse):  0.9809669 .
## Chain 5 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##          0.1698          0.1495 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##       0.8651628       0.8811908 
## Joint P-value (lower = worse):  0.9917481 .
## Chain 6 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##          0.9322          0.9342 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##       0.3512105       0.3502172 
## Joint P-value (lower = worse):  0.8383678 .
## Chain 7 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##           edges gwesp.fixed.0.2 
##          -1.036          -1.105 
## 
## Individual P-values (lower = worse):
##           edges gwesp.fixed.0.2 
##       0.2999820       0.2691882 
## Joint P-value (lower = worse):  0.7781036 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).
mcmc.diagnostics(wto_panel_model.02)
## Sample statistics summary:
## 
## Iterations = 294912:1474560
## Thinning interval = 16384 
## Number of chains = 7 
## Sample size per chain = 73 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                           Mean    SD Naive SE Time-series SE
## edges                 -10.4697 64.00   2.8311          4.094
## gwesp.fixed.0.2       -14.1948 89.52   3.9603          5.592
## edgecov.shared_panels  -0.1135 12.92   0.5718          0.759
## 
## 2. Quantiles for each variable:
## 
##                          2.5%    25%    50%   75% 97.5%
## edges                 -131.75 -55.00 -11.00 36.50 106.2
## gwesp.fixed.0.2       -179.44 -77.12 -12.71 49.92 154.7
## edgecov.shared_panels  -24.25  -8.00   0.00  8.50  25.0
## 
## 
## Are sample statistics significantly different from observed?
##                    edges gwesp.fixed.0.2 edgecov.shared_panels Overall (Chi^2)
## diff.      -10.469667319   -14.194826250            -0.1135029              NA
## test stat.  -2.765453497    -2.711499766            -0.1575029      8.08904944
## P-val.       0.005684371     0.006697959             0.8748485      0.04687236
## 
## Sample statistics cross-correlations:
##                           edges gwesp.fixed.0.2 edgecov.shared_panels
## edges                 1.0000000       0.9801268             0.3868940
## gwesp.fixed.0.2       0.9801268       1.0000000             0.3872259
## edgecov.shared_panels 0.3868940       0.3872259             1.0000000
## 
## Sample statistics auto-correlation:
## Chain 1 
##                  edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.000000000     1.000000000            1.00000000
## Lag 16384  0.205252525     0.195756140            0.26358019
## Lag 32768  0.002882614     0.002980485            0.17748011
## Lag 49152 -0.033809227    -0.048724564            0.06374397
## Lag 65536 -0.045212140    -0.047675988            0.06683707
## Lag 81920 -0.056770697    -0.031908984            0.09368365
## Chain 2 
##                edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.0000000      1.00000000            1.00000000
## Lag 16384  0.2844351      0.24138211            0.32060115
## Lag 32768 -0.1219451     -0.15106481           -0.11820335
## Lag 49152 -0.1866672     -0.19288560           -0.13394792
## Lag 65536 -0.2511173     -0.19828634           -0.14818703
## Lag 81920  0.1186569      0.07570948            0.06015265
## Chain 3 
##                  edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.000000000     1.000000000           1.000000000
## Lag 16384  0.530490170     0.509906943           0.403510767
## Lag 32768  0.288882726     0.308694917           0.260379808
## Lag 49152  0.217239228     0.215636234           0.038249832
## Lag 65536  0.039207164     0.055235191           0.009207241
## Lag 81920 -0.003676279    -0.002783644           0.024232005
## Chain 4 
##                 edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.00000000      1.00000000            1.00000000
## Lag 16384  0.29644409      0.32063565            0.09166636
## Lag 32768  0.09078477      0.11157622            0.03378808
## Lag 49152 -0.05825371     -0.07540709            0.02463202
## Lag 65536 -0.15335553     -0.23200868           -0.09875086
## Lag 81920 -0.22821537     -0.24356435            0.11081031
## Chain 5 
##                 edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.00000000      1.00000000            1.00000000
## Lag 16384  0.39552372      0.36427039            0.24656924
## Lag 32768  0.09559802      0.10238711           -0.02622055
## Lag 49152  0.09686949      0.07355758            0.24222613
## Lag 65536 -0.02656633     -0.03001282            0.02982365
## Lag 81920 -0.10793027     -0.11616079           -0.15195168
## Chain 6 
##                 edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0     1.000000000     1.000000000           1.000000000
## Lag 16384 0.235237944     0.207798635           0.213259923
## Lag 32768 0.004245257    -0.006122916          -0.070123442
## Lag 49152 0.016934973    -0.037071845           0.064240694
## Lag 65536 0.068672104     0.035493017           0.106152399
## Lag 81920 0.002569283    -0.003992582           0.003357262
## Chain 7 
##                  edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.000000000     1.000000000           1.000000000
## Lag 16384  0.335917035     0.349401117           0.139631642
## Lag 32768  0.045849453     0.080777733           0.002936689
## Lag 49152 -0.086124586    -0.118546384           0.347607354
## Lag 65536 -0.002520493    -0.048821896          -0.099513606
## Lag 81920  0.037424354    -0.001261064          -0.199145105
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##                 1.682                 1.943                 4.553 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##          9.256106e-02          5.201149e-02          5.298422e-06 
## Joint P-value (lower = worse):  0.0126946 .
## Chain 2 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##              -0.30292               0.07894               0.86545 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##             0.7619497             0.9370776             0.3867944 
## Joint P-value (lower = worse):  0.3269362 .
## Chain 3 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##               -0.3763               -0.4570               -1.1795 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##             0.7066913             0.6476976             0.2381955 
## Joint P-value (lower = worse):  0.8560017 .
## Chain 4 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##                0.5246                0.6987                2.7846 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##           0.599855025           0.484710566           0.005358579 
## Joint P-value (lower = worse):  0.2908666 .
## Chain 5 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##                3.2614                3.7184                0.3737 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##          0.0011084968          0.0002005107          0.7086261283 
## Joint P-value (lower = worse):  0.1108889 .
## Chain 6 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##                0.7428                0.5926                1.1197 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##             0.4575762             0.5534642             0.2628571 
## Joint P-value (lower = worse):  0.759567 .
## Chain 7 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##               -0.8995               -0.6495               -2.0365 
## 
## Individual P-values (lower = worse):
##                 edges       gwesp.fixed.0.2 edgecov.shared_panels 
##            0.36838564            0.51603412            0.04170309 
## Joint P-value (lower = worse):  0.1451812 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).
mcmc.diagnostics(wto_panel_model.03)
## Sample statistics summary:
## 
## Iterations = 155648:974848
## Thinning interval = 8192 
## Number of chains = 7 
## Sample size per chain = 101 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                             Mean     SD Naive SE Time-series SE
## edges                    -3.8246  64.02   2.4078         4.2905
## gwesp.fixed.0.2          -4.6288  87.73   3.2993         5.6739
## edgecov.shared_panels    -0.7072  13.20   0.4964         0.8153
## edgecov.shared_personnel -8.3946 168.06   6.3206        11.0066
## 
## 2. Quantiles for each variable:
## 
##                            2.5%     25%    50%    75% 97.5%
## edges                    -135.3  -45.50 -4.000  42.00 123.7
## gwesp.fixed.0.2          -188.5  -60.13 -2.447  53.92 169.1
## edgecov.shared_panels     -26.0  -10.00  0.000   9.00  23.0
## edgecov.shared_personnel -362.9 -119.00 -8.000 109.50 313.3
## 
## 
## Are sample statistics significantly different from observed?
##                 edges gwesp.fixed.0.2 edgecov.shared_panels
## diff.      -3.8246110      -4.6288288            -0.7072136
## test stat. -0.8825833      -0.8157770            -0.9235597
## P-val.      0.3774614       0.4146277             0.3557156
##            edgecov.shared_personnel Overall (Chi^2)
## diff.                    -8.3946252              NA
## test stat.               -0.7532532        2.296086
## P-val.                    0.4512978        0.685173
## 
## Sample statistics cross-correlations:
##                              edges gwesp.fixed.0.2 edgecov.shared_panels
## edges                    1.0000000       0.9835699             0.4653847
## gwesp.fixed.0.2          0.9835699       1.0000000             0.4769071
## edgecov.shared_panels    0.4653847       0.4769071             1.0000000
## edgecov.shared_personnel 0.9695559       0.9532862             0.4835112
##                          edgecov.shared_personnel
## edges                                   0.9695559
## gwesp.fixed.0.2                         0.9532862
## edgecov.shared_panels                   0.4835112
## edgecov.shared_personnel                1.0000000
## 
## Sample statistics auto-correlation:
## Chain 1 
##                edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0     1.00000000      1.00000000          1.0000000000
## Lag 8192  0.45046333      0.43651950          0.4042510149
## Lag 16384 0.18673140      0.14147727          0.1534430361
## Lag 24576 0.13361100      0.08050757          0.0491890914
## Lag 32768 0.11737395      0.08494353         -0.0023869086
## Lag 40960 0.09428062      0.05847478         -0.0003399683
##           edgecov.shared_personnel
## Lag 0                   1.00000000
## Lag 8192                0.45086118
## Lag 16384               0.18700751
## Lag 24576               0.13549750
## Lag 32768               0.05399027
## Lag 40960               0.03039310
## Chain 2 
##                 edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.00000000       1.0000000             1.0000000
## Lag 8192   0.48997508       0.5077682             0.3845428
## Lag 16384  0.17318350       0.1799506             0.2090845
## Lag 24576  0.13603779       0.1550451             0.2550886
## Lag 32768 -0.02938998       0.0166963             0.1742157
## Lag 40960 -0.12066929      -0.0715848             0.1326253
##           edgecov.shared_personnel
## Lag 0                   1.00000000
## Lag 8192                0.44498949
## Lag 16384               0.14242151
## Lag 24576               0.10081595
## Lag 32768              -0.07145916
## Lag 40960              -0.10255518
## Chain 3 
##                edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0     1.00000000      1.00000000            1.00000000
## Lag 8192  0.51494456      0.48157714            0.17377170
## Lag 16384 0.18808280      0.11097562            0.03502230
## Lag 24576 0.10908364      0.03720395            0.00913528
## Lag 32768 0.08139201      0.05699899            0.15519057
## Lag 40960 0.08824836      0.07053682            0.02723564
##           edgecov.shared_personnel
## Lag 0                   1.00000000
## Lag 8192                0.50850255
## Lag 16384               0.16042761
## Lag 24576               0.11400801
## Lag 32768               0.06599421
## Lag 40960               0.04768946
## Chain 4 
##               edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0     1.0000000       1.0000000             1.0000000
## Lag 8192  0.5592154       0.5460224             0.4929922
## Lag 16384 0.3731059       0.3813799             0.2590899
## Lag 24576 0.2122358       0.2369954             0.2861028
## Lag 32768 0.1308311       0.1278726             0.2458864
## Lag 40960 0.1895495       0.1990546             0.1434693
##           edgecov.shared_personnel
## Lag 0                    1.0000000
## Lag 8192                 0.5547523
## Lag 16384                0.3656697
## Lag 24576                0.2013203
## Lag 32768                0.1169880
## Lag 40960                0.1774161
## Chain 5 
##                edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0      1.0000000      1.00000000            1.00000000
## Lag 8192   0.5089471      0.48221447            0.49637483
## Lag 16384  0.2950437      0.29698758            0.38303955
## Lag 24576  0.1167389      0.07688077            0.26488483
## Lag 32768 -0.1029901     -0.10272941            0.13848068
## Lag 40960 -0.1490851     -0.13552491            0.08104964
##           edgecov.shared_personnel
## Lag 0                   1.00000000
## Lag 8192                0.53947600
## Lag 16384               0.30262298
## Lag 24576               0.07609620
## Lag 32768              -0.09539039
## Lag 40960              -0.12867939
## Chain 6 
##                edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0     1.00000000      1.00000000            1.00000000
## Lag 8192  0.51318003      0.49721871            0.37548759
## Lag 16384 0.34719580      0.30603285            0.22432604
## Lag 24576 0.27370857      0.23564245            0.15047362
## Lag 32768 0.20768711      0.16095552            0.03031621
## Lag 40960 0.02847814      0.02116772           -0.07452968
##           edgecov.shared_personnel
## Lag 0                   1.00000000
## Lag 8192                0.52163746
## Lag 16384               0.28792035
## Lag 24576               0.26111440
## Lag 32768               0.22951394
## Lag 40960               0.07231841
## Chain 7 
##                edges gwesp.fixed.0.2 edgecov.shared_panels
## Lag 0     1.00000000      1.00000000           1.000000000
## Lag 8192  0.39533115      0.36582838           0.395595959
## Lag 16384 0.31021990      0.26339001           0.144900942
## Lag 24576 0.30441400      0.31910199           0.082555279
## Lag 32768 0.21995893      0.21101017           0.105847476
## Lag 40960 0.03929676      0.03706958           0.002499552
##           edgecov.shared_personnel
## Lag 0                   1.00000000
## Lag 8192                0.42112295
## Lag 16384               0.31715208
## Lag 24576               0.28743662
## Lag 32768               0.20489700
## Lag 40960               0.02764382
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                  -0.9502                  -1.5165                  -0.9210 
## edgecov.shared_personnel 
##                  -1.1301 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                0.3420290                0.1293968                0.3570509 
## edgecov.shared_personnel 
##                0.2584349 
## Joint P-value (lower = worse):  0.09366804 .
## Chain 2 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                   0.9256                   1.2796                   1.0521 
## edgecov.shared_personnel 
##                   0.4322 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                0.3546576                0.2006927                0.2927509 
## edgecov.shared_personnel 
##                0.6656276 
## Joint P-value (lower = worse):  0.2470874 .
## Chain 3 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                   -1.150                   -1.120                   -2.422 
## edgecov.shared_personnel 
##                   -1.159 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##               0.25030159               0.26263714               0.01543463 
## edgecov.shared_personnel 
##               0.24648028 
## Joint P-value (lower = worse):  0.1938829 .
## Chain 4 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                   0.7404                   0.7734                   1.9494 
## edgecov.shared_personnel 
##                   0.9355 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##               0.45908758               0.43930514               0.05124346 
## edgecov.shared_personnel 
##               0.34954346 
## Joint P-value (lower = worse):  0.4667118 .
## Chain 5 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                   -1.239                   -1.423                   -1.485 
## edgecov.shared_personnel 
##                   -1.219 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                0.2152052                0.1547094                0.1374875 
## edgecov.shared_personnel 
##                0.2228180 
## Joint P-value (lower = worse):  0.5529701 .
## Chain 6 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                  -0.3238                  -0.2144                  -0.6994 
## edgecov.shared_personnel 
##                  -0.5073 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                0.7460760                0.8302637                0.4842859 
## edgecov.shared_personnel 
##                0.6119730 
## Joint P-value (lower = worse):  0.703946 .
## Chain 7 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                   0.1502                   0.3673                   0.1289 
## edgecov.shared_personnel 
##                   0.7233 
## 
## Individual P-values (lower = worse):
##                    edges          gwesp.fixed.0.2    edgecov.shared_panels 
##                0.8805831                0.7133709                0.8974205 
## edgecov.shared_personnel 
##                0.4694706 
## Joint P-value (lower = worse):  0.4576132 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).