Ecuaciones - fórmulas - sintaxis y comandos latex
SuperÍndice - potencia
\[
e=mc^2
\]
\[
a^2+b^2=c^2
\]
Subíndice
\[
H_2O
\]
\[
NH_3
\]
\[
N3_H
\]
Fracciones
\[
\frac{1}{2} + \frac{3}{4}
\]
\[
\frac{1}{2} - \frac{3}{4}
\]
\[
\frac{1}{2} * \frac{3}{4}
\]
\[
\frac{1}{2} . \frac{3}{4}
\]
\[
\frac{1}{2} \div \frac{3}{4}
\]
\[
(\frac{1}{2})
\]
\[
\left(\frac{1}{2}\right)^2
\]
Dada la fracción \(\frac{1}{2}\) podemos determinar el valor de la variable..
Dada la fracción \(\tfrac{1}{2}\) podemos determinar el valor de la variable..
Dada la fracción \(\dfrac{1}{2}\) podemos determinar el valor de la variable..
Raíces
\[
\sqrt{2}=1.4142
\]
\[
\sqrt{3}=1.7320
\]
\[
\sqrt{4}=2
\]
Sumatoria
\[
\sum_{i=1}^5 2i
\]
\[
\sum_{i=3}^6 2i-1
\]
\[
\sum_{i=2}^6 \frac{i+1}{i}
\]
Logaritmos
\[
\log_7{49} = 2
\]
\[
\log_6{216} = 3
\]
\[
\log_3{81} = 4
\]
Matrices
\[
\begin{matrix}
1 & 8 & 9 \\
1 & 8 & 10 \\
1 & 8 & 9
\end{matrix}
\]
\[
\begin{pmatrix}
1 & 8 & 9 \\
1 & 8 & 10 \\
1 & 8 & 9
\end{pmatrix}
\]
\[
\begin{bmatrix}
1 & 8 & 9 \\
1 & 8 & 10 \\
1 & 8 & 9
\end{bmatrix}
\]
\[
\begin{Bmatrix}
1 & 8 & 9 \\
1 & 8 & 10 \\
1 & 8 & 9
\end{Bmatrix}
\]
\[
\begin{vmatrix}
1 & 8 & 9 \\
1 & 8 & 10 \\
1 & 8 & 9
\end{vmatrix}
\]
\[
\begin{Vmatrix}
1 & 8 & 9 \\
1 & 8 & 10 \\
1 & 8 & 9
\end{Vmatrix}
\]
Ecuaciones
Dada la función
\[
\begin{equation}
f(x)=y
\end{equation}
\]
podemos determinar el valor de la variable
\[
\text{Fórmula ecuación 2° grado} \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Símbolos matemáticos básicos
\[
(900)
\]
\[
[900]
\]
\[
|900|
\]
\[
444>333
\]
\[
444<555
\]
LS0tDQp0aXRsZTogIlNpbnRheGlzIC0gY29tYW5kb3MgTGFUZVgiDQpzdWJ0aXRsZTogIkxhVGVYIC0gTWFya2Rvd24iDQphdXRob3I6ICJ5byINCmRhdGU6ICIyMDIyLzA0LzI5Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIEHDsWFkaXIgZWN1YWNpb25lcyB5IGbDs3JtdWxhcyBlbiBtYXJrZG93biBoYWNpZW5kbyB1c28gZGUgTGFUZVggLS0+DQoNCiMgRWN1YWNpb25lcyAtIGbDs3JtdWxhcyAtIHNpbnRheGlzIHkgY29tYW5kb3MgbGF0ZXgNCg0KIyMgU3VwZXLDjW5kaWNlIC0gcG90ZW5jaWENCg0KJCQNCmU9bWNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQphXjIrYl4yPWNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIFN1YsOtbmRpY2UNCg0KJCQNCkhfMk8NCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KTkhfMw0KJCQNCg0KJCQNCk4zX0gNCiQkDQoNCiMjIEZyYWNjaW9uZXMNCg0KJCQNClxmcmFjezF9ezJ9ICsgXGZyYWN7M317NH0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSAtIFxmcmFjezN9ezR9DQokJA0KDQokJA0KXGZyYWN7MX17Mn0gKiBcZnJhY3szfXs0fQ0KJCQNCg0KJCQNClxmcmFjezF9ezJ9IC4gXGZyYWN7M317NH0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSBcZGl2IFxmcmFjezN9ezR9DQokJA0KDQokJA0KKFxmcmFjezF9ezJ9KQ0KJCQNCg0KJCQNClxsZWZ0KFxmcmFjezF9ezJ9XHJpZ2h0KV4yDQokJA0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcdGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9PTEuNDE0Mg0KJCQNCg0KJCQNClxzcXJ0ezN9PTEuNzMyMA0KJCQNCg0KJCQNClxzcXJ0ezR9PTINCiQkDQoNCiMjIFN1bWF0b3JpYQ0KDQokJA0KXHN1bV97aT0xfV41IDJpDQokJA0KDQokJA0KXHN1bV97aT0zfV42IDJpLTENCiQkDQoNCiQkDQpcc3VtX3tpPTJ9XjYgXGZyYWN7aSsxfXtpfQ0KJCQNCg0KIyMgTG9nYXJpdG1vcw0KDQokJA0KXGxvZ183ezQ5fSA9IDINCiQkDQoNCiQkDQpcbG9nXzZ7MjE2fSA9IDMNCiQkDQoNCiQkDQpcbG9nXzN7ODF9ID0gNA0KJCQNCg0KIyMgTWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQoxICYgOCAmIDkgXFwNCjEgJiA4ICYgMTAgXFwNCjEgJiA4ICYgOSAgDQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7cG1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Ym1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7dm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Vm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7Vm1hdHJpeH0NCiQkDQoNCiMjIEVjdWFjaW9uZXMNCg0KRGFkYSBsYSBmdW5jacOzbg0KDQokJA0KXGJlZ2lue2VxdWF0aW9ufQ0KZih4KT15DQpcZW5ke2VxdWF0aW9ufQ0KJCQNCg0KcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlDQoNCiQkDQpcdGV4dHtGw7NybXVsYSBlY3VhY2nDs24gMsKwIGdyYWRvfSBccXVhZCB4ID0gXGZyYWN7LWIgXHBtIFxzcXJ0e2JeMiAtIDRhY319ezJhfQ0KJCQNCg0KIyMgU8OtbWJvbG9zIG1hdGVtw6F0aWNvcyBiw6FzaWNvcw0KDQokJA0KKDkwMCkNCiQkDQoNCiQkDQpbOTAwXQ0KJCQNCg0KJCQNCnw5MDB8DQokJA0KDQokJA0KNDQ0PjMzMw0KJCQNCg0KJCQNCjQ0NDw1NTUNCiQkDQo=