Ecuaciones - fórmulas - sintaxis y comandos latex

SuperÍndice - potencia

\[ e=mc^2 \]


\[ a^2+b^2=c^2 \]


Subíndice

\[ H_2O \]


\[ NH_3 \]

\[ N3_H \]

Fracciones

\[ \frac{1}{2} + \frac{3}{4} \]

\[ \frac{1}{2} - \frac{3}{4} \]

\[ \frac{1}{2} * \frac{3}{4} \]

\[ \frac{1}{2} . \frac{3}{4} \]

\[ \frac{1}{2} \div \frac{3}{4} \]

\[ (\frac{1}{2}) \]

\[ \left(\frac{1}{2}\right)^2 \]

Dada la fracción \(\frac{1}{2}\) podemos determinar el valor de la variable..

Dada la fracción \(\tfrac{1}{2}\) podemos determinar el valor de la variable..

Dada la fracción \(\dfrac{1}{2}\) podemos determinar el valor de la variable..

Raíces

\[ \sqrt{2}=1.4142 \]

\[ \sqrt{3}=1.7320 \]

\[ \sqrt{4}=2 \]

Sumatoria

\[ \sum_{i=1}^5 2i \]

\[ \sum_{i=3}^6 2i-1 \]

\[ \sum_{i=2}^6 \frac{i+1}{i} \]

Logaritmos

\[ \log_7{49} = 2 \]

\[ \log_6{216} = 3 \]

\[ \log_3{81} = 4 \]

Matrices

\[ \begin{matrix} 1 & 8 & 9 \\ 1 & 8 & 10 \\ 1 & 8 & 9 \end{matrix} \]

\[ \begin{pmatrix} 1 & 8 & 9 \\ 1 & 8 & 10 \\ 1 & 8 & 9 \end{pmatrix} \]

\[ \begin{bmatrix} 1 & 8 & 9 \\ 1 & 8 & 10 \\ 1 & 8 & 9 \end{bmatrix} \]

\[ \begin{Bmatrix} 1 & 8 & 9 \\ 1 & 8 & 10 \\ 1 & 8 & 9 \end{Bmatrix} \]

\[ \begin{vmatrix} 1 & 8 & 9 \\ 1 & 8 & 10 \\ 1 & 8 & 9 \end{vmatrix} \]

\[ \begin{Vmatrix} 1 & 8 & 9 \\ 1 & 8 & 10 \\ 1 & 8 & 9 \end{Vmatrix} \]

Ecuaciones

Dada la función

\[ \begin{equation} f(x)=y \end{equation} \]

podemos determinar el valor de la variable

\[ \text{Fórmula ecuación 2° grado} \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Símbolos matemáticos básicos

\[ (900) \]

\[ [900] \]

\[ |900| \]

\[ 444>333 \]

\[ 444<555 \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIC0gY29tYW5kb3MgTGFUZVgiDQpzdWJ0aXRsZTogIkxhVGVYIC0gTWFya2Rvd24iDQphdXRob3I6ICJ5byINCmRhdGU6ICIyMDIyLzA0LzI5Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIEHDsWFkaXIgZWN1YWNpb25lcyB5IGbDs3JtdWxhcyBlbiBtYXJrZG93biBoYWNpZW5kbyB1c28gZGUgTGFUZVggLS0+DQoNCiMgRWN1YWNpb25lcyAtIGbDs3JtdWxhcyAtIHNpbnRheGlzIHkgY29tYW5kb3MgbGF0ZXgNCg0KIyMgU3VwZXLDjW5kaWNlIC0gcG90ZW5jaWENCg0KJCQNCmU9bWNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQphXjIrYl4yPWNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIFN1YsOtbmRpY2UNCg0KJCQNCkhfMk8NCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KTkhfMw0KJCQNCg0KJCQNCk4zX0gNCiQkDQoNCiMjIEZyYWNjaW9uZXMNCg0KJCQNClxmcmFjezF9ezJ9ICsgXGZyYWN7M317NH0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSAtIFxmcmFjezN9ezR9DQokJA0KDQokJA0KXGZyYWN7MX17Mn0gKiBcZnJhY3szfXs0fQ0KJCQNCg0KJCQNClxmcmFjezF9ezJ9IC4gXGZyYWN7M317NH0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSBcZGl2IFxmcmFjezN9ezR9DQokJA0KDQokJA0KKFxmcmFjezF9ezJ9KQ0KJCQNCg0KJCQNClxsZWZ0KFxmcmFjezF9ezJ9XHJpZ2h0KV4yDQokJA0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcdGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9PTEuNDE0Mg0KJCQNCg0KJCQNClxzcXJ0ezN9PTEuNzMyMA0KJCQNCg0KJCQNClxzcXJ0ezR9PTINCiQkDQoNCiMjIFN1bWF0b3JpYQ0KDQokJA0KXHN1bV97aT0xfV41IDJpDQokJA0KDQokJA0KXHN1bV97aT0zfV42IDJpLTENCiQkDQoNCiQkDQpcc3VtX3tpPTJ9XjYgXGZyYWN7aSsxfXtpfQ0KJCQNCg0KIyMgTG9nYXJpdG1vcw0KDQokJA0KXGxvZ183ezQ5fSA9IDINCiQkDQoNCiQkDQpcbG9nXzZ7MjE2fSA9IDMNCiQkDQoNCiQkDQpcbG9nXzN7ODF9ID0gNA0KJCQNCg0KIyMgTWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQoxICYgOCAmIDkgXFwNCjEgJiA4ICYgMTAgXFwNCjEgJiA4ICYgOSAgDQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7cG1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Ym1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7dm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Vm1hdHJpeH0NCjEgJiA4ICYgOSBcXA0KMSAmIDggJiAxMCBcXA0KMSAmIDggJiA5ICANClxlbmR7Vm1hdHJpeH0NCiQkDQoNCiMjIEVjdWFjaW9uZXMNCg0KRGFkYSBsYSBmdW5jacOzbg0KDQokJA0KXGJlZ2lue2VxdWF0aW9ufQ0KZih4KT15DQpcZW5ke2VxdWF0aW9ufQ0KJCQNCg0KcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlDQoNCiQkDQpcdGV4dHtGw7NybXVsYSBlY3VhY2nDs24gMsKwIGdyYWRvfSBccXVhZCB4ID0gXGZyYWN7LWIgXHBtIFxzcXJ0e2JeMiAtIDRhY319ezJhfQ0KJCQNCg0KIyMgU8OtbWJvbG9zIG1hdGVtw6F0aWNvcyBiw6FzaWNvcw0KDQokJA0KKDkwMCkNCiQkDQoNCiQkDQpbOTAwXQ0KJCQNCg0KJCQNCnw5MDB8DQokJA0KDQokJA0KNDQ0PjMzMw0KJCQNCg0KJCQNCjQ0NDw1NTUNCiQkDQo=