ls()
## character(0)
rm(list = ls())
getwd()
## [1] "D:/data/paper"
setwd("D:/data/paper")
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.1.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
#년도별, gt별, 월별 기동횟수
start<-read.csv("start count.csv")
repair<-read.csv("repair1.csv")

str(repair)
## 'data.frame':    103 obs. of  12 variables:
##  $ no    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ date  : int  20220415 20201231 20200717 20190919 20181005 20180205 20170731 20160831 20160909 20160930 ...
##  $ gt    : chr  "1gt" "1gt" "1gt" "1gt" ...
##  $ ma1   : chr  "Spring" "Exciter" "Ignitor" "Exciter" ...
##  $ ma2   : chr  "" "" "" "" ...
##  $ ma3   : chr  "" "" "" "" ...
##  $ mat1  : chr  "4" "2" "1" "2" ...
##  $ mat2  : chr  "-" "-" "-" "-" ...
##  $ mat3  : chr  "-" "-" "-" "-" ...
##  $ cause : chr  "경년열화" "부품손상" "부품손상" "부품손상" ...
##  $ 증상  : chr  "손상" "손상" "손상" "손상" ...
##  $ action: chr  "점화기 리턴 불량으로 인한 Spring 교체 " "Exciter 동작불량으로 교체" "5번 Ignitor 교체 " "Exciter 동작불량으로 교체" ...
repair$year<-substr(repair$date,1,4)
repair$mon<-substr(repair$date,5,6)
str(repair)
## 'data.frame':    103 obs. of  14 variables:
##  $ no    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ date  : int  20220415 20201231 20200717 20190919 20181005 20180205 20170731 20160831 20160909 20160930 ...
##  $ gt    : chr  "1gt" "1gt" "1gt" "1gt" ...
##  $ ma1   : chr  "Spring" "Exciter" "Ignitor" "Exciter" ...
##  $ ma2   : chr  "" "" "" "" ...
##  $ ma3   : chr  "" "" "" "" ...
##  $ mat1  : chr  "4" "2" "1" "2" ...
##  $ mat2  : chr  "-" "-" "-" "-" ...
##  $ mat3  : chr  "-" "-" "-" "-" ...
##  $ cause : chr  "경년열화" "부품손상" "부품손상" "부품손상" ...
##  $ 증상  : chr  "손상" "손상" "손상" "손상" ...
##  $ action: chr  "점화기 리턴 불량으로 인한 Spring 교체 " "Exciter 동작불량으로 교체" "5번 Ignitor 교체 " "Exciter 동작불량으로 교체" ...
##  $ year  : chr  "2022" "2020" "2020" "2019" ...
##  $ mon   : chr  "04" "12" "07" "09" ...
reyear<-repair %>% group_by(year) %>% summarise(count=n())
reyear
## # A tibble: 13 x 2
##    year  count
##    <chr> <int>
##  1 2009     18
##  2 2010     17
##  3 2011      7
##  4 2012     10
##  5 2014      2
##  6 2015      2
##  7 2016     11
##  8 2017      5
##  9 2018      9
## 10 2019      8
## 11 2020      8
## 12 2021      5
## 13 2022      1
reyear<-reyear %>% slice(1,2,3,4,5,6,7,8,9,10,11)
reyear
## # A tibble: 11 x 2
##    year  count
##    <chr> <int>
##  1 2009     18
##  2 2010     17
##  3 2011      7
##  4 2012     10
##  5 2014      2
##  6 2015      2
##  7 2016     11
##  8 2017      5
##  9 2018      9
## 10 2019      8
## 11 2020      8
stryear<-start %>% group_by(year) %>% summarise(count=sum(count))
stryear
## # A tibble: 12 x 2
##     year count
##    <int> <int>
##  1  2009  1205
##  2  2010  1346
##  3  2011  1401
##  4  2012  1427
##  5  2013  1400
##  6  2014   867
##  7  2015   255
##  8  2016   326
##  9  2017   161
## 10  2018   287
## 11  2019   333
## 12  2020   209
reyear$year<-as.numeric(reyear$year)
year<-full_join(reyear,stryear,by="year")
year
## # A tibble: 12 x 3
##     year count.x count.y
##    <dbl>   <int>   <int>
##  1  2009      18    1205
##  2  2010      17    1346
##  3  2011       7    1401
##  4  2012      10    1427
##  5  2014       2     867
##  6  2015       2     255
##  7  2016      11     326
##  8  2017       5     161
##  9  2018       9     287
## 10  2019       8     333
## 11  2020       8     209
## 12  2013      NA    1400
mean(year$count.x,na.rm=T)
## [1] 8.818182
year$count.x<-ifelse(is.na(year$count.x),8.818,year$count.x)
ggplot(data=year,aes(x=year,y=count.x,z=count.y))+geom_point()

str(start)
## 'data.frame':    864 obs. of  4 variables:
##  $ year : int  2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 ...
##  $ month: int  1 2 3 4 5 6 7 8 9 10 ...
##  $ gt   : chr  "1gt" "1gt" "1gt" "1gt" ...
##  $ count: int  2 7 21 26 7 15 28 25 24 19 ...
strgt<-start %>% group_by(gt) %>% summarise(count=sum(count))
strgt
## # A tibble: 6 x 2
##   gt    count
##   <chr> <int>
## 1 1gt    1554
## 2 2gt    1490
## 3 3gt    1488
## 4 4gt    1426
## 5 5gt    1622
## 6 6gt    1637