This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
attach(coint)
#nombres de columnas
names(coint)
## [1] "Year" "Quarter" "tiempo" "DPI" "GDP" "PCE" "CP"
## [8] "DIVIDEND"
class(coint)
## [1] "tbl_df" "tbl" "data.frame"
plot(PCE)
lnPCE = log(PCE)
lnDPI = log(DPI)
DPI.ts = ts(lnDPI, start=c(1974,1), end=c(2007,4), frequency = 4)
PCE.ts = ts(lnPCE, start=c(1974,1), end=c(2007,4), frequency = 4)
datos1=cbind(DPI.ts, PCE.ts)
plot(cbind(DPI.ts, PCE.ts))
modelo1 = lm(PCE.ts ~ DPI.ts)
summary(modelo1)
##
## Call:
## lm(formula = PCE.ts ~ DPI.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.031067 -0.009396 -0.001756 0.007100 0.046117
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.194408 0.021496 9.044 1.51e-15 ***
## DPI.ts 0.960252 0.002806 342.210 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0128 on 134 degrees of freedom
## Multiple R-squared: 0.9989, Adjusted R-squared: 0.9988
## F-statistic: 1.171e+05 on 1 and 134 DF, p-value: < 2.2e-16
cor(PCE,DPI)
## [1] 0.9984923
residuales=modelo1$residuals
summary(residuales)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.031067 -0.009396 -0.001756 0.000000 0.007100 0.046117
residualPlot(modelo1)
#prueba
adf.test(residuales)
## Augmented Dickey-Fuller Test
## alternative: stationary
##
## Type 1: no drift no trend
## lag ADF p.value
## [1,] 0 -6.05 0.01
## [2,] 1 -5.01 0.01
## [3,] 2 -4.90 0.01
## [4,] 3 -5.36 0.01
## [5,] 4 -4.10 0.01
## Type 2: with drift no trend
## lag ADF p.value
## [1,] 0 -6.02 0.01
## [2,] 1 -5.00 0.01
## [3,] 2 -4.89 0.01
## [4,] 3 -5.36 0.01
## [5,] 4 -4.12 0.01
## Type 3: with drift and trend
## lag ADF p.value
## [1,] 0 -6.00 0.01
## [2,] 1 -5.02 0.01
## [3,] 2 -4.93 0.01
## [4,] 3 -5.45 0.01
## [5,] 4 -4.26 0.01
## ----
## Note: in fact, p.value = 0.01 means p.value <= 0.01
y = ur.df(residuales, type = "trend", selectlags = "AIC")
summary(y)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.038950 -0.005109 0.000418 0.004343 0.039482
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.662e-03 1.724e-03 -0.964 0.3369
## z.lag.1 -3.753e-01 7.480e-02 -5.017 1.69e-06 ***
## tt 1.829e-05 2.192e-05 0.835 0.4055
## z.diff.lag -1.680e-01 8.090e-02 -2.077 0.0398 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009808 on 130 degrees of freedom
## Multiple R-squared: 0.2775, Adjusted R-squared: 0.2608
## F-statistic: 16.64 on 3 and 130 DF, p-value: 3.279e-09
##
##
## Value of test-statistic is: -5.017 8.6193 12.8112
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47
y2 = ur.df(residuales, type = "drift", selectlags = "AIC")
summary(y2)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression drift
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.040038 -0.004852 0.000548 0.004892 0.038497
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0004084 0.0008463 -0.483 0.6302
## z.lag.1 -0.3732403 0.0746724 -4.998 1.82e-06 ***
## z.diff.lag -0.1683817 0.0808055 -2.084 0.0391 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009797 on 131 degrees of freedom
## Multiple R-squared: 0.2736, Adjusted R-squared: 0.2625
## F-statistic: 24.67 on 2 and 131 DF, p-value: 8.05e-10
##
##
## Value of test-statistic is: -4.9984 12.6098
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau2 -3.46 -2.88 -2.57
## phi1 6.52 4.63 3.81
y3 = ur.df(residuales, type = "none", selectlags = "AIC")
summary(y3)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.040447 -0.005259 0.000139 0.004482 0.038084
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.37326 0.07446 -5.013 1.69e-06 ***
## z.diff.lag -0.16819 0.08057 -2.088 0.0388 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009768 on 132 degrees of freedom
## Multiple R-squared: 0.2732, Adjusted R-squared: 0.2622
## F-statistic: 24.81 on 2 and 132 DF, p-value: 7.139e-10
##
##
## Value of test-statistic is: -5.0133
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
#SEGUN TODAS ESTAS PRUEBAS SON ESTACIONARIAS
#Philips y Oularis
prueba.P0 = ca.po(datos1, type="Pz")
summary(prueba.P0)
##
## ########################################
## # Phillips and Ouliaris Unit Root Test #
## ########################################
##
## Test of type Pz
## detrending of series none
##
## Response DPI.ts :
##
## Call:
## lm(formula = DPI.ts ~ zr - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.035593 -0.005006 0.000100 0.005352 0.053987
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## zrDPI.ts 0.78931 0.05893 13.394 < 2e-16 ***
## zrPCE.ts 0.21501 0.05979 3.596 0.000454 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01117 on 133 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 3.18e+07 on 2 and 133 DF, p-value: < 2.2e-16
##
##
## Response PCE.ts :
##
## Call:
## lm(formula = PCE.ts ~ zr - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.035093 -0.004833 0.000136 0.005776 0.042633
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## zrDPI.ts 0.06780 0.05341 1.27 0.206
## zrPCE.ts 0.93239 0.05418 17.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01012 on 133 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 3.761e+07 on 2 and 133 DF, p-value: < 2.2e-16
##
##
##
## Value of test-statistic is: 50.7408
##
## Critical values of Pz are:
## 10pct 5pct 1pct
## critical values 33.9267 40.8217 55.1911
prueba.P2 = ca.po(datos1, type="Pu")
summary(prueba.P2)
##
## ########################################
## # Phillips and Ouliaris Unit Root Test #
## ########################################
##
## Test of type Pu
## detrending of series none
##
##
## Call:
## lm(formula = z[, 1] ~ z[, -1] - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.064570 -0.006143 0.001245 0.008814 0.043063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z[, -1] 1.0146094 0.0001865 5441 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01642 on 135 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.961e+07 on 1 and 135 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: 38.8218
##
## Critical values of Pu are:
## 10pct 5pct 1pct
## critical values 20.3933 25.9711 38.3413
tendencia=seq_along(PCE.ts)
print(tendencia)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136
#hacemos un nuevo modelo
modelo2=lm(PCE.ts~tendencia+DPI.ts)
residuales2 = modelo2$residuals
residualPlot(modelo2)
DFresiduales2 = ur.df(residuales2, type = "trend", selectlags = "AIC")
summary(DFresiduales2)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.033155 -0.005175 -0.000228 0.004714 0.040952
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.428e-03 1.616e-03 -0.884 0.3783
## z.lag.1 -3.483e-01 7.237e-02 -4.813 4.06e-06 ***
## tt 1.423e-05 2.054e-05 0.693 0.4898
## z.diff.lag -1.844e-01 8.088e-02 -2.279 0.0243 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009195 on 130 degrees of freedom
## Multiple R-squared: 0.2688, Adjusted R-squared: 0.2519
## F-statistic: 15.93 on 3 and 130 DF, p-value: 7.031e-09
##
##
## Value of test-statistic is: -4.8128 7.9497 11.7426
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47
dlnPCE = diff(PCE.ts)
dlnDPI = diff(DPI.ts)
modelo3 = lm(dlnPCE~dlnDPI)
summary(modelo3)
##
## Call:
## lm(formula = dlnPCE ~ dlnDPI)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.039263 -0.004656 0.000486 0.004847 0.039199
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.005772 0.001040 5.552 1.48e-07 ***
## dlnDPI 0.336966 0.069578 4.843 3.50e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009362 on 133 degrees of freedom
## Multiple R-squared: 0.1499, Adjusted R-squared: 0.1435
## F-statistic: 23.45 on 1 and 133 DF, p-value: 3.499e-06
res3=modelo3$residuals
res3_1 = lag(res3)
MCE = lm(dlnPCE ~ dlnDPI + res3_1)
summary(MCE)
##
## Call:
## lm(formula = dlnPCE ~ dlnDPI + res3_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.035477 -0.005194 0.000119 0.005468 0.041716
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.004802 0.001045 4.593 1.01e-05 ***
## dlnDPI 0.423487 0.071830 5.896 2.99e-08 ***
## res3_1 -0.238421 0.087117 -2.737 0.00707 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009041 on 131 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.216, Adjusted R-squared: 0.204
## F-statistic: 18.05 on 2 and 131 DF, p-value: 1.195e-07
MCE$coefficients[3]
## res3_1
## -0.2384208
abs(MCE$coefficients[3])
## res3_1
## 0.2384208