Creating the environment

This template is based in this paper

https://revistas.ucm.es/index.php/REVE/article/view/75566/4564456557467

For a detail explanation of how to use it, please watch this video

https://www.youtube.com/watch?v=jtKSifvNvTM

Data getting

wos_scopus_tos <- 
  tosr::tosr_load("coastal zone management act.txt", 
                  "coastal zone management act.bib")

tree_of_science <- 
  tosr::tosR("coastal zone management act.txt", 
             "coastal zone management act.bib")

wos <- 
  bibliometrix::convert2df("coastal zone management act.txt")  # create dataframe from wos file

scopus <- 
  bibliometrix::convert2df("coastal zone management act.bib", # Create dataframe from scopus file
                           dbsource = "scopus", 
                           format = "bibtex")

Table 1. Search Criteria

table_1 <- 
  tibble(wos = length(wos$SR), # Create a dataframe with the values.
         scopus = length(scopus$SR), 
         total = length(wos_scopus_tos$df$SR))
table_1

Figure 1. Languages

main_languages <- 
  wos_scopus_tos$df |> 
  select(LA) |> 
  separate_rows(LA, sep = "; ") |> 
  count(LA, sort = TRUE) |> 
  slice(1:5)

other_languages <- 
  wos_scopus_tos$df |> 
  separate_rows(LA, sep = "; ") |> 
  select(LA) |> 
  count(LA, sort = TRUE) |> 
  slice(6:n) |> 
  summarise(n = sum(n)) |> 
  mutate(LA = "OTHERS") |> 
  select(LA, n)
Warning in 6:n :
  numerical expression has 4 elements: only the first used
languages <- 
  main_languages |> 
  bind_rows(other_languages) |> 
  mutate(percentage = n / sum(n),
         percentage = round(percentage, 
                            digits = 2) ) |> 
  rename(language = LA) |>
  select(language, percentage, count = n)

languages
df <- languages |> 
  rename(value = percentage, group = language) |>
  mutate(value = value * 100) |> 
  select(value, group)

df2 <- df %>% 
  mutate(csum = rev(cumsum(rev(value))), 
         pos = value/2 + lead(csum, 1),
         pos = if_else(is.na(pos), value/2, pos))

ggplot(df, aes(x = 2 , y = value, fill = fct_inorder(group))) +
  geom_col(width = 1, color = 1) +
  coord_polar(theta = "y") +
  geom_label_repel(data = df2,
                   aes(y = pos, label = paste0(value, "%")),
                   size = 4.5, nudge_x = 1, show.legend = FALSE) +
  theme(panel.background = element_blank(),
        axis.line = element_blank(), 
        axis.text = element_blank(),
        axis.ticks = element_blank(),
        axis.title = element_blank(),
        plot.title = element_text(hjust = 0.5, size = 18)) +
  labs(title = "Languages") +
  guides(fill = guide_legend(title = "")) +
  theme_void() +
  xlim(0.5, 2.5)

Figure 2. Scientific Production

wos_anual_production <- 
  wos |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |> 
  mutate(ref_type = "wos")

scopus_anual_production  <- 
  scopus |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "scopus")

total_anual_production <- 
  wos_scopus_tos$df |> 
  select(PY) |> 
  count(PY, sort = TRUE) |> 
  na.omit() |> 
  filter(PY >= 2000,
         PY < year(today())) |>
  mutate(ref_type = "total")

wos_scopus_total_annual_production <- 
  wos_anual_production |> 
  bind_rows(scopus_anual_production,
            total_anual_production) 

figure_2_data <- 
  wos_scopus_total_annual_production |> 
  mutate(PY = replace_na(PY, replace = 0)) |> 
  pivot_wider(names_from = ref_type, 
              values_from = n) |> 
  arrange(desc(PY))

figure_2_data 
wos_scopus_total_annual_production |> 
  ggplot(aes(x = PY, y = n, color = ref_type)) +
  geom_line() +
  labs(title = "Annual Scientific Production", 
       x = "years",
       y = "papers") +
  theme(plot.title = element_text(hjust = 0.5)) 

Table 2. Country production

data_biblio_wos <- biblioAnalysis(wos)

wos_country <- 
  data_biblio_wos$Countries |> 
  data.frame() |> 
  mutate(database = "wos") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_scopus <- biblioAnalysis(scopus)

scopus_country <- 
  data_biblio_scopus$Countries |> 
  data.frame() |> 
  mutate(database = "scopus") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

data_biblio_total <- biblioAnalysis(wos_scopus_tos$df)

total_country <- 
  data_biblio_total$Countries |> 
  data.frame() |> 
  mutate(database = "total") |> 
  select(country = Tab, papers = Freq, database ) |> 
  arrange(desc(papers)) 

wos_scopus_total_country <- 
  wos_country |> 
  bind_rows(scopus_country, 
            total_country) |> 
  mutate(country = as.character(country)) |> 
  pivot_wider(names_from = database, 
              values_from = papers) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / (table_1 |> pull(total)),
         percentage = round(percentage, digits = 2))

wos_scopus_total_country

Table 3. Author production

wos_authors <- 
  data_biblio_wos$Authors |> 
  data.frame() |> 
  rename(authors_wos = AU, papers_wos = Freq) |> 
  arrange(desc(papers_wos)) |> 
  slice(1:10) |> 
  mutate(database_wos = "wos")


scopus_authors <- 
  data_biblio_scopus$Authors |> 
  data.frame() |> 
  rename(authors_scopus = AU, papers_scopus = Freq) |> 
  arrange(desc(papers_scopus)) |> 
  slice(1:10) |> 
  mutate(database_scopus = "scopus")

total_authors <- 
  data_biblio_total$Authors |> 
  data.frame() |> 
  rename(authors_total = AU, 
         papers_total = Freq) |> 
  arrange(desc(papers_total)) |> 
  slice(1:10) |> 
  mutate(database_total = "total")

wos_scopus_authors <- 
  wos_authors |> 
  bind_cols(scopus_authors,
            total_authors)

wos_scopus_authors

Table 4. Journal production

wos_journal <- 
  wos |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "wos")

scopus_journal <- 
  scopus |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "scopus")

total_journal <- 
  wos_scopus_tos$df |> 
  select(journal = SO) |> 
  na.omit() |> 
  count(journal, sort = TRUE) |> 
  slice(1:20) |> 
  rename(publications = n) |> 
  mutate(database = "total")

wos_scopus_total_journal <- 
  wos_journal |> 
  bind_rows(scopus_journal, 
            total_journal) |> 
  pivot_wider(names_from = database, 
              values_from = publications) |> 
  arrange(desc(total)) |> 
  slice(1:10) |> 
  mutate(percentage = total / table_1 |> pull(total),
         percentage = round(percentage, digits = 2))


wos_scopus_total_journal

Figure 3. Co-citation network

Author co-citation network

wos_scopus_author_metatag <- 
  metaTagExtraction(wos_scopus_tos$df, Field = "CR_AU")

wos_scopus_author_co_citation_matrix <- 
  biblioNetwork(M = wos_scopus_author_metatag, 
                analysis = "co-citation", 
                network = "authors")

aca_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_author_co_citation_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

weight_tbl <- 
  aca_tbl_graph |> 
  activate(edges) |> 
  select(weight) |> 
  as.data.frame()

threshold <- 
  quantile(weight_tbl |> 
             select(weight) |> 
             pull(), 
           probs = 0.80)

aca_tbl_graph_filtered <- 
  aca_tbl_graph |> 
  activate(edges) |> 
  filter(weight >= threshold) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |> 
  filter(components == 1) |> 
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

aca_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Author Collaboration network

wos_scopus_author_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "authors")

plot_author_collab <- 
  networkPlot(NetMatrix = wos_scopus_author_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Author Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)


author_collab_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_author_collab_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

author_collab_tbl_graph_filtered <- 
  author_collab_tbl_graph |> 
  activate(edges) |> 
  filter(weight > 1) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |>
  filter(components == 1) |>
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

author_collab_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Country Collaboration Network

wos_scopus_country_collab_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "collaboration", 
                network = "countries")

plot_country_collab <- 
  networkPlot(wos_scopus_country_collab_matrix, 
              weighted=T, n = 30, 
              Title = "Country Collaboration Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)


country_collab_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_country_collab_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

country_collab_tbl_graph_filtered <- 
  country_collab_tbl_graph |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |>
  filter(components == 1) |>
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

country_collab_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Keyword co-occurrence network

wos_scopus_keyword_co_occurrence_matrix <- 
  biblioNetwork(M = wos_scopus_tos$df, 
                analysis = "co-occurrences", 
                network = "keywords", 
                sep = ";")

plot_net_co_occurrence <- 
  networkPlot(wos_scopus_keyword_co_occurrence_matrix, 
              weighted=T, n = 30, 
              Title = "Keyword Co-occurrence Network", 
              type = "fruchterman", 
              size=T,
              edgesize = 5,
              labelsize=0.7)


keyword_co_occurrence_tbl_graph <- 
  graph_from_adjacency_matrix(wos_scopus_keyword_co_occurrence_matrix , 
                              mode = "undirected", 
                              weighted = TRUE, 
                              diag = FALSE) |> 
  as_tbl_graph(aca_igraph, directed = FALSE ) |> 
  activate(nodes) |> 
  mutate(degree = centrality_degree()) |> 
  arrange(desc(degree)) |> 
  slice(1:30)

keyword_co_occurrence_weight_tbl <- 
  keyword_co_occurrence_tbl_graph |> 
  activate(edges) |> 
  select(weight) |> 
  as.data.frame()

threshold <- 
  quantile(keyword_co_occurrence_weight_tbl |> 
             select(weight) |> 
             pull(), 
           probs = 0.80)

keyword_co_occurrence_tbl_graph_filtered <- 
  keyword_co_occurrence_tbl_graph |> 
  activate(edges) |> 
  filter(weight >= threshold) |> 
  activate(nodes) |> 
  mutate(components = group_components(type = "weak")) |> 
  filter(components == 1) |> 
  mutate(degree = centrality_degree(),
         community = as.factor(group_louvain()) )

keyword_co_occurrence_tbl_graph_filtered |> 
  ggraph(layout = "kk") + 
  geom_edge_link(alpha = .25, 
                 aes(width = weight)) +
  geom_node_point(aes(colour = community, 
                      size = degree)) +
  geom_node_text(aes(label = name), repel = TRUE) +
  theme_graph()

Figure 4. Tree of Science

Tree of Science

tree_of_science

Clustering analysis

Finding the clusters

nodes <-  # Create a dataframe with the fullname of articles 
  tibble(name = V(wos_scopus_tos$graph)$name) |> 
  left_join(wos_scopus_tos$nodes, 
            by = c("name" = "ID_TOS"))

wos_scopus_citation_network_1 <- # Add the article names to the citation network
  wos_scopus_tos$graph |> 
  igraph::set.vertex.attribute(name = "full_name", 
                               index = V(wos_scopus_tos$graph)$name, 
                               value = nodes$CITE)

nodes_1 <- # Create a dataframe with subfields (clusters)
  tibble(name = V(wos_scopus_citation_network_1)$name,
         cluster = V(wos_scopus_citation_network_1)$subfield,
         full_name = V(wos_scopus_citation_network_1)$full_name)

nodes_2 <- # Count the number of articles per cluster
  nodes_1 |> 
  count(cluster, sort = TRUE) |> 
  mutate(cluster_1 = row_number()) |> 
  select(cluster, cluster_1)

nodes_3 <- 
  nodes_1 |> 
  left_join(nodes_2) |> 
  rename(subfield = cluster_1) |> 
  select(name, full_name, subfield)
Joining, by = "cluster"
edge_list <- 
  get.edgelist(wos_scopus_citation_network_1) |> 
  data.frame() |> 
  rename(Source = X1, Target = X2)

wos_scopus_citation_network <- 
  graph.data.frame(d = edge_list, 
                   directed = TRUE, 
                   vertices = nodes_3)

wos_scopus_citation_network |> 
  summary()
IGRAPH 27eb36b DN-- 163 295 -- 
+ attr: name (v/c), full_name (v/c), subfield (v/n)

Choosing clusters

We proposed the tipping point option to choose the number of clusters. See this paper:

https://www.nature.com/articles/s41598-021-85041-8

clusters <- 
  tibble(cluster = V(wos_scopus_citation_network)$subfield) |> 
  count(cluster, sort = TRUE)

clusters |> 
  ggplot(aes(x = reorder(cluster, n), y = n)) +
  geom_point(size = 3) +
  labs(x = "Clusters", y = "Number of papers") +
  theme(axis.title.x = element_text(size = 16 , 
                                    family =  "Arial"),
        axis.title.y = element_text(size = 16, family = "Arial"),
        axis.text.x = element_text(size = 12, family = "Arial"), 
        axis.text.y = element_text(size = 12, family = "Arial"))

Removing not chosen clusters

wos_scopus_citation_network_clusters <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1 & # filter clusters 
                          V(wos_scopus_citation_network)$subfield != 2 &
                          V(wos_scopus_citation_network)$subfield != 3  &
                          V(wos_scopus_citation_network)$subfield != 4))

wos_scopus_citation_network_clusters |> 
  summary()
IGRAPH 8b2cd8b DN-- 98 180 -- 
+ attr: name (v/c), full_name (v/c), subfield (v/n)

Cluster 1

nodes_full_data |> 
  filter(cluster == 1) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> # Tokenization
  anti_join(stop_words) |>  # Removing stop words
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "coastal"), 
         word == str_remove(word, pattern = "management"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "management"),
         word == str_remove(word, pattern = "bibliometric"),
         word == str_remove(word, pattern = "review"),
         word == str_remove(word, pattern = "journal")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Cluster 2

nodes_full_data |> 
  filter(cluster == 2) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "coastal"), 
         word == str_remove(word, pattern = "management"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Cluster 3


cluster_3 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 3))

cluster_3_page_rank <- 
  cluster_3 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_3)$vector)

cluster_3_df <- 
  tibble(name = V(cluster_3_page_rank)$name,
         full_name = V(cluster_3_page_rank)$full_name,
         page_rank = V(cluster_3_page_rank)$page_rank,
         cluster = V(cluster_3_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 3) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |>
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data 
  filter(word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "coastal"), 
         word == str_remove(word, pattern = "management"),
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability"),
         word == str_remove(word, pattern = "journal"),
         word == str_remove(word, pattern = "information")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Cluster 4


cluster_4 <- 
  wos_scopus_citation_network |> 
  delete.vertices(which(V(wos_scopus_citation_network)$subfield != 4))

cluster_4_page_rank <- 
  cluster_4 |> 
  set.vertex.attribute(name = "page_rank", 
                       value = page_rank(cluster_4)$vector)

cluster_4_df <- 
  tibble(name = V(cluster_4_page_rank)$name,
         full_name = V(cluster_4_page_rank)$full_name,
         page_rank = V(cluster_4_page_rank)$page_rank,
         cluster = V(cluster_4_page_rank)$subfield,)

nodes_full_data |> 
  filter(cluster == 4) |> 
  select(full_name) |> 
  mutate(full_name = str_extract(full_name, SPC %R%  # Regular expressions 
                                   one_or_more(WRD) %R% 
                                   SPC %R% 
                                   one_or_more(or(WRD, ANY_CHAR))),
         full_name = str_remove(full_name, OPEN_PAREN %R% 
                                  repeated(DGT, 4) %R% 
                                  CLOSE_PAREN %R%
                                  one_or_more(or(WRD,ANY_CHAR))),
         full_name = str_trim(full_name))  |> 
  unnest_tokens(output = word, input = full_name) |> 
  anti_join(stop_words) |> 
  filter(word != "doi",
         !str_detect(word, "[0-9]")) |>  # WoS data
  filter(word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "coastal"), 
         word == str_remove(word, pattern = "management"), 
         word == str_remove(word, pattern = "analysis"), 
         word == str_remove(word, pattern = "science"),
         word == str_remove(word, pattern = "scientometric"),
         word == str_remove(word, pattern = "vulnerability")) |>
  count(word, sort = TRUE) |> 
  with(wordcloud(word, 
                 n, 
                 random.order = FALSE, 
                 max.words = 50, 
                 colors=pal))
Joining, by = "word"

Exporting files


write_csv(wos_scopus_tos$df, "wos_scopus_tos.csv") # Exporting all data merged

write_csv(table_1, "table_1.csv") # Exporting table 1
write_csv(wos_scopus_total_country, "table_2_.csv")  # Exporting table 2
write_csv(wos_scopus_authors, "table_3.csv") # Exporting table 3
write_csv(wos_scopus_total_journal, "table_4.csv") # Exporting table 4


write_csv(languages, "figure_1.csv") # Exporting data figure 1 
write_csv(figure_2_data, "figure_2.csv") # Exporting data figure 2

write.graph(wos_scopus_citation_network, "citation_network_full.graphml", "graphml") # Exporting graph
write.graph(wos_scopus_citation_network_clusters, 
            "wos_scopus_citation_network_clusters.graphml", 
            "graphml")

aca_graphml_nodes <- 
  aca_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

aca_graphml_edges <- 
  aca_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

aca_graphml <- 
  graph_from_data_frame(d = aca_graphml_edges, 
                        directed = FALSE, 
                        vertices = aca_graphml_nodes)

write_graph(aca_graphml, "aca_graph.graphml", "graphml") # Export author co-citation graph

author_collab_graphml_nodes <- 
  author_collab_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

author_collab_graphml_edges <- 
  author_collab_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

author_collab_graphml <- 
  graph_from_data_frame(d = author_collab_graphml_edges, 
                        directed = FALSE, 
                        vertices = author_collab_graphml_nodes)

write_graph(author_collab_graphml, "author_collab_graphml.graphml", "graphml") # Export author co-citation graph

country_collab_graphml_nodes <- 
  country_collab_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

country_collab_graphml_edges <- 
  country_collab_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble() 

country_collab_graphml <- 
  graph_from_data_frame(d = country_collab_graphml_edges, 
                        directed = FALSE, 
                        vertices = country_collab_graphml_nodes)

write_graph(country_collab_graphml, "country_collab_graphml.graphml", "graphml") # Export author co-citation graph

keyword_co_occurrence_graphml_nodes <- 
  keyword_co_occurrence_tbl_graph_filtered |> 
  activate(nodes) |> 
  as_tibble() |> 
  rename(author = name) |> 
  rownames_to_column("name")

keyword_co_occurrence_graphml_edges <- 
  keyword_co_occurrence_tbl_graph_filtered |> 
  activate(edges) |> 
  as_tibble()  

keyword_co_occurrence_graphml <- 
  graph_from_data_frame(d = keyword_co_occurrence_graphml_edges, 
                        directed = FALSE, 
                        vertices = keyword_co_occurrence_graphml_nodes)

write_graph(keyword_co_occurrence_graphml, "keyword_co_occurrence_graphml.graphml", "graphml") # Export author co-citation graph

write.csv(tree_of_science, "tree_of_science.csv") # Exporting Tree of Science

write.csv(cluster_1_df, "cluster_1.csv") # Exporting cluster 1
write.csv(cluster_2_df, "cluster_2.csv") # Exporting cluster 2
write.csv(cluster_3_df, "cluster_3.csv") # Exporting cluster 3
Error in is.data.frame(x) : object 'cluster_3_df' not found
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKIyBDcmVhdGluZyB0aGUgZW52aXJvbm1lbnQKCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHRvc3IpCmxpYnJhcnkoYmlibGlvbWV0cml4KQpsaWJyYXJ5KGx1YnJpZGF0ZSkKbGlicmFyeShpZ3JhcGgpCmxpYnJhcnkodGlkeXRleHQpCmxpYnJhcnkod29yZGNsb3VkKQpsaWJyYXJ5KHJlYnVzKQpsaWJyYXJ5KGdncmVwZWwpICMgaW1wcm92ZSBkb251dCB2aXN1YWxpemF0aW9uCmxpYnJhcnkoZ2dyYXBoKQpsaWJyYXJ5KHZpc05ldHdvcmspIApsaWJyYXJ5KHRpZHlncmFwaCkKYGBgCgpUaGlzIHRlbXBsYXRlIGlzIGJhc2VkIGluIHRoaXMgcGFwZXIKCmh0dHBzOi8vcmV2aXN0YXMudWNtLmVzL2luZGV4LnBocC9SRVZFL2FydGljbGUvdmlldy83NTU2Ni80NTY0NDU2NTU3NDY3CgpGb3IgYSBkZXRhaWwgZXhwbGFuYXRpb24gb2YgaG93IHRvIHVzZSBpdCwgcGxlYXNlIHdhdGNoIHRoaXMgdmlkZW8gCgpodHRwczovL3d3dy55b3V0dWJlLmNvbS93YXRjaD92PWp0S1NpZnZOdlRNCgojIERhdGEgZ2V0dGluZwoKYGBge3J9Cndvc19zY29wdXNfdG9zIDwtIAogIHRvc3I6OnRvc3JfbG9hZCgiY29hc3RhbCB6b25lIG1hbmFnZW1lbnQgYWN0LnR4dCIsIAogICAgICAgICAgICAgICAgICAiY29hc3RhbCB6b25lIG1hbmFnZW1lbnQgYWN0LmJpYiIpCgp0cmVlX29mX3NjaWVuY2UgPC0gCiAgdG9zcjo6dG9zUigiY29hc3RhbCB6b25lIG1hbmFnZW1lbnQgYWN0LnR4dCIsIAogICAgICAgICAgICAgImNvYXN0YWwgem9uZSBtYW5hZ2VtZW50IGFjdC5iaWIiKQoKd29zIDwtIAogIGJpYmxpb21ldHJpeDo6Y29udmVydDJkZigiY29hc3RhbCB6b25lIG1hbmFnZW1lbnQgYWN0LnR4dCIpICAjIGNyZWF0ZSBkYXRhZnJhbWUgZnJvbSB3b3MgZmlsZQoKc2NvcHVzIDwtIAogIGJpYmxpb21ldHJpeDo6Y29udmVydDJkZigiY29hc3RhbCB6b25lIG1hbmFnZW1lbnQgYWN0LmJpYiIsICMgQ3JlYXRlIGRhdGFmcmFtZSBmcm9tIHNjb3B1cyBmaWxlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGRic291cmNlID0gInNjb3B1cyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICBmb3JtYXQgPSAiYmlidGV4IikKYGBgCgojIyBUYWJsZSAxLiBTZWFyY2ggQ3JpdGVyaWEKCmBgYHtyfQp0YWJsZV8xIDwtIAogIHRpYmJsZSh3b3MgPSBsZW5ndGgod29zJFNSKSwgIyBDcmVhdGUgYSBkYXRhZnJhbWUgd2l0aCB0aGUgdmFsdWVzLgogICAgICAgICBzY29wdXMgPSBsZW5ndGgoc2NvcHVzJFNSKSwgCiAgICAgICAgIHRvdGFsID0gbGVuZ3RoKHdvc19zY29wdXNfdG9zJGRmJFNSKSkKdGFibGVfMQpgYGAKCiMjIEZpZ3VyZSAxLiBMYW5ndWFnZXMKCmBgYHtyfQptYWluX2xhbmd1YWdlcyA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZWxlY3QoTEEpIHw+IAogIHNlcGFyYXRlX3Jvd3MoTEEsIHNlcCA9ICI7ICIpIHw+IAogIGNvdW50KExBLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMTo1KQoKb3RoZXJfbGFuZ3VhZ2VzIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlcGFyYXRlX3Jvd3MoTEEsIHNlcCA9ICI7ICIpIHw+IAogIHNlbGVjdChMQSkgfD4gCiAgY291bnQoTEEsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSg2Om4pIHw+IAogIHN1bW1hcmlzZShuID0gc3VtKG4pKSB8PiAKICBtdXRhdGUoTEEgPSAiT1RIRVJTIikgfD4gCiAgc2VsZWN0KExBLCBuKQoKbGFuZ3VhZ2VzIDwtIAogIG1haW5fbGFuZ3VhZ2VzIHw+IAogIGJpbmRfcm93cyhvdGhlcl9sYW5ndWFnZXMpIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gbiAvIHN1bShuKSwKICAgICAgICAgcGVyY2VudGFnZSA9IHJvdW5kKHBlcmNlbnRhZ2UsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlnaXRzID0gMikgKSB8PiAKICByZW5hbWUobGFuZ3VhZ2UgPSBMQSkgfD4KICBzZWxlY3QobGFuZ3VhZ2UsIHBlcmNlbnRhZ2UsIGNvdW50ID0gbikKCmxhbmd1YWdlcwpgYGAKCgpgYGB7cn0KZGYgPC0gbGFuZ3VhZ2VzIHw+IAogIHJlbmFtZSh2YWx1ZSA9IHBlcmNlbnRhZ2UsIGdyb3VwID0gbGFuZ3VhZ2UpIHw+CiAgbXV0YXRlKHZhbHVlID0gdmFsdWUgKiAxMDApIHw+IAogIHNlbGVjdCh2YWx1ZSwgZ3JvdXApCgpkZjIgPC0gZGYgJT4lIAogIG11dGF0ZShjc3VtID0gcmV2KGN1bXN1bShyZXYodmFsdWUpKSksIAogICAgICAgICBwb3MgPSB2YWx1ZS8yICsgbGVhZChjc3VtLCAxKSwKICAgICAgICAgcG9zID0gaWZfZWxzZShpcy5uYShwb3MpLCB2YWx1ZS8yLCBwb3MpKQoKZ2dwbG90KGRmLCBhZXMoeCA9IDIgLCB5ID0gdmFsdWUsIGZpbGwgPSBmY3RfaW5vcmRlcihncm91cCkpKSArCiAgZ2VvbV9jb2wod2lkdGggPSAxLCBjb2xvciA9IDEpICsKICBjb29yZF9wb2xhcih0aGV0YSA9ICJ5IikgKwogIGdlb21fbGFiZWxfcmVwZWwoZGF0YSA9IGRmMiwKICAgICAgICAgICAgICAgICAgIGFlcyh5ID0gcG9zLCBsYWJlbCA9IHBhc3RlMCh2YWx1ZSwgIiUiKSksCiAgICAgICAgICAgICAgICAgICBzaXplID0gNC41LCBudWRnZV94ID0gMSwgc2hvdy5sZWdlbmQgPSBGQUxTRSkgKwogIHRoZW1lKHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy5saW5lID0gZWxlbWVudF9ibGFuaygpLCAKICAgICAgICBheGlzLnRleHQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy50aWNrcyA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIHNpemUgPSAxOCkpICsKICBsYWJzKHRpdGxlID0gIkxhbmd1YWdlcyIpICsKICBndWlkZXMoZmlsbCA9IGd1aWRlX2xlZ2VuZCh0aXRsZSA9ICIiKSkgKwogIHRoZW1lX3ZvaWQoKSArCiAgeGxpbSgwLjUsIDIuNSkKYGBgCgojIyBGaWd1cmUgMi4gU2NpZW50aWZpYyBQcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2FudWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4gCiAgbXV0YXRlKHJlZl90eXBlID0gIndvcyIpCgpzY29wdXNfYW51YWxfcHJvZHVjdGlvbiAgPC0gCiAgc2NvcHVzIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4KICBtdXRhdGUocmVmX3R5cGUgPSAic2NvcHVzIikKCnRvdGFsX2FudWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zX3Njb3B1c190b3MkZGYgfD4gCiAgc2VsZWN0KFBZKSB8PiAKICBjb3VudChQWSwgc29ydCA9IFRSVUUpIHw+IAogIG5hLm9taXQoKSB8PiAKICBmaWx0ZXIoUFkgPj0gMjAwMCwKICAgICAgICAgUFkgPCB5ZWFyKHRvZGF5KCkpKSB8PgogIG11dGF0ZShyZWZfdHlwZSA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvc19hbnVhbF9wcm9kdWN0aW9uIHw+IAogIGJpbmRfcm93cyhzY29wdXNfYW51YWxfcHJvZHVjdGlvbiwKICAgICAgICAgICAgdG90YWxfYW51YWxfcHJvZHVjdGlvbikgCgpmaWd1cmVfMl9kYXRhIDwtIAogIHdvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gfD4gCiAgbXV0YXRlKFBZID0gcmVwbGFjZV9uYShQWSwgcmVwbGFjZSA9IDApKSB8PiAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gcmVmX3R5cGUsIAogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gbikgfD4gCiAgYXJyYW5nZShkZXNjKFBZKSkKCmZpZ3VyZV8yX2RhdGEgCmBgYAoKYGBge3J9Cndvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gfD4gCiAgZ2dwbG90KGFlcyh4ID0gUFksIHkgPSBuLCBjb2xvciA9IHJlZl90eXBlKSkgKwogIGdlb21fbGluZSgpICsKICBsYWJzKHRpdGxlID0gIkFubnVhbCBTY2llbnRpZmljIFByb2R1Y3Rpb24iLCAKICAgICAgIHggPSAieWVhcnMiLAogICAgICAgeSA9ICJwYXBlcnMiKSArCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpIApgYGAKCiMjIFRhYmxlIDIuIENvdW50cnkgcHJvZHVjdGlvbgoKYGBge3J9CmRhdGFfYmlibGlvX3dvcyA8LSBiaWJsaW9BbmFseXNpcyh3b3MpCgp3b3NfY291bnRyeSA8LSAKICBkYXRhX2JpYmxpb193b3MkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAid29zIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKZGF0YV9iaWJsaW9fc2NvcHVzIDwtIGJpYmxpb0FuYWx5c2lzKHNjb3B1cykKCnNjb3B1c19jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3Njb3B1cyRDb3VudHJpZXMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJzY29wdXMiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgpkYXRhX2JpYmxpb190b3RhbCA8LSBiaWJsaW9BbmFseXNpcyh3b3Nfc2NvcHVzX3RvcyRkZikKCnRvdGFsX2NvdW50cnkgPC0gCiAgZGF0YV9iaWJsaW9fdG90YWwkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAidG90YWwiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgp3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnkgPC0gCiAgd29zX2NvdW50cnkgfD4gCiAgYmluZF9yb3dzKHNjb3B1c19jb3VudHJ5LCAKICAgICAgICAgICAgdG90YWxfY291bnRyeSkgfD4gCiAgbXV0YXRlKGNvdW50cnkgPSBhcy5jaGFyYWN0ZXIoY291bnRyeSkpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBkYXRhYmFzZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBwYXBlcnMpIHw+IAogIGFycmFuZ2UoZGVzYyh0b3RhbCkpIHw+IAogIHNsaWNlKDE6MTApIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gdG90YWwgLyAodGFibGVfMSB8PiBwdWxsKHRvdGFsKSksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCBkaWdpdHMgPSAyKSkKCndvc19zY29wdXNfdG90YWxfY291bnRyeQpgYGAKCiMjIFRhYmxlIDMuIEF1dGhvciBwcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2F1dGhvcnMgPC0gCiAgZGF0YV9iaWJsaW9fd29zJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3dvcyA9IEFVLCBwYXBlcnNfd29zID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc193b3MpKSB8PiAKICBzbGljZSgxOjEwKSB8PiAKICBtdXRhdGUoZGF0YWJhc2Vfd29zID0gIndvcyIpCgoKc2NvcHVzX2F1dGhvcnMgPC0gCiAgZGF0YV9iaWJsaW9fc2NvcHVzJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3Njb3B1cyA9IEFVLCBwYXBlcnNfc2NvcHVzID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc19zY29wdXMpKSB8PiAKICBzbGljZSgxOjEwKSB8PiAKICBtdXRhdGUoZGF0YWJhc2Vfc2NvcHVzID0gInNjb3B1cyIpCgp0b3RhbF9hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3RvdGFsJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3RvdGFsID0gQVUsIAogICAgICAgICBwYXBlcnNfdG90YWwgPSBGcmVxKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzX3RvdGFsKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3RvdGFsID0gInRvdGFsIikKCndvc19zY29wdXNfYXV0aG9ycyA8LSAKICB3b3NfYXV0aG9ycyB8PiAKICBiaW5kX2NvbHMoc2NvcHVzX2F1dGhvcnMsCiAgICAgICAgICAgIHRvdGFsX2F1dGhvcnMpCgp3b3Nfc2NvcHVzX2F1dGhvcnMKYGBgCgojIyBUYWJsZSA0LiBKb3VybmFsIHByb2R1Y3Rpb24KCmBgYHtyfQp3b3Nfam91cm5hbCA8LSAKICB3b3MgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gIndvcyIpCgpzY29wdXNfam91cm5hbCA8LSAKICBzY29wdXMgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInNjb3B1cyIpCgp0b3RhbF9qb3VybmFsIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlbGVjdChqb3VybmFsID0gU08pIHw+IAogIG5hLm9taXQoKSB8PiAKICBjb3VudChqb3VybmFsLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgcmVuYW1lKHB1YmxpY2F0aW9ucyA9IG4pIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwgPC0gCiAgd29zX2pvdXJuYWwgfD4gCiAgYmluZF9yb3dzKHNjb3B1c19qb3VybmFsLCAKICAgICAgICAgICAgdG90YWxfam91cm5hbCkgfD4gCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGRhdGFiYXNlLCAKICAgICAgICAgICAgICB2YWx1ZXNfZnJvbSA9IHB1YmxpY2F0aW9ucykgfD4gCiAgYXJyYW5nZShkZXNjKHRvdGFsKSkgfD4gCiAgc2xpY2UoMToxMCkgfD4gCiAgbXV0YXRlKHBlcmNlbnRhZ2UgPSB0b3RhbCAvIHRhYmxlXzEgfD4gcHVsbCh0b3RhbCksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCBkaWdpdHMgPSAyKSkKCgp3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwKYGBgCgojIyBGaWd1cmUgMy4gQ28tY2l0YXRpb24gbmV0d29yawoKIyMjIEF1dGhvciBjby1jaXRhdGlvbiBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19hdXRob3JfbWV0YXRhZyA8LSAKICBtZXRhVGFnRXh0cmFjdGlvbih3b3Nfc2NvcHVzX3RvcyRkZiwgRmllbGQgPSAiQ1JfQVUiKQoKd29zX3Njb3B1c19hdXRob3JfY29fY2l0YXRpb25fbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfYXV0aG9yX21ldGF0YWcsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY28tY2l0YXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiYXV0aG9ycyIpCgphY2FfdGJsX2dyYXBoIDwtIAogIGdyYXBoX2Zyb21fYWRqYWNlbmN5X21hdHJpeCh3b3Nfc2NvcHVzX2F1dGhvcl9jb19jaXRhdGlvbl9tYXRyaXggLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZSA9ICJ1bmRpcmVjdGVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpYWcgPSBGQUxTRSkgfD4gCiAgYXNfdGJsX2dyYXBoKGFjYV9pZ3JhcGgsIGRpcmVjdGVkID0gRkFMU0UgKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCkpIHw+IAogIGFycmFuZ2UoZGVzYyhkZWdyZWUpKSB8PiAKICBzbGljZSgxOjMwKQoKd2VpZ2h0X3RibCA8LSAKICBhY2FfdGJsX2dyYXBoIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBzZWxlY3Qod2VpZ2h0KSB8PiAKICBhcy5kYXRhLmZyYW1lKCkKCnRocmVzaG9sZCA8LSAKICBxdWFudGlsZSh3ZWlnaHRfdGJsIHw+IAogICAgICAgICAgICAgc2VsZWN0KHdlaWdodCkgfD4gCiAgICAgICAgICAgICBwdWxsKCksIAogICAgICAgICAgIHByb2JzID0gMC44MCkKCmFjYV90YmxfZ3JhcGhfZmlsdGVyZWQgPC0gCiAgYWNhX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgZmlsdGVyKHdlaWdodCA+PSB0aHJlc2hvbGQpIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+IAogIGZpbHRlcihjb21wb25lbnRzID09IDEpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpLAogICAgICAgICBjb21tdW5pdHkgPSBhcy5mYWN0b3IoZ3JvdXBfbG91dmFpbigpKSApCgphY2FfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGdncmFwaChsYXlvdXQgPSAia2siKSArIAogIGdlb21fZWRnZV9saW5rKGFscGhhID0gLjI1LCAKICAgICAgICAgICAgICAgICBhZXMod2lkdGggPSB3ZWlnaHQpKSArCiAgZ2VvbV9ub2RlX3BvaW50KGFlcyhjb2xvdXIgPSBjb21tdW5pdHksIAogICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IGRlZ3JlZSkpICsKICBnZW9tX25vZGVfdGV4dChhZXMobGFiZWwgPSBuYW1lKSwgcmVwZWwgPSBUUlVFKSArCiAgdGhlbWVfZ3JhcGgoKQpgYGAKCiMjIyBBdXRob3IgQ29sbGFib3JhdGlvbiBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19hdXRob3JfY29sbGFiX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX3RvcyRkZiwgCiAgICAgICAgICAgICAgICBhbmFseXNpcyA9ICJjb2xsYWJvcmF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImF1dGhvcnMiKQoKcGxvdF9hdXRob3JfY29sbGFiIDwtIAogIG5ldHdvcmtQbG90KE5ldE1hdHJpeCA9IHdvc19zY29wdXNfYXV0aG9yX2NvbGxhYl9tYXRyaXgsIAogICAgICAgICAgICAgIHdlaWdodGVkPVQsIG4gPSAzMCwgCiAgICAgICAgICAgICAgVGl0bGUgPSAiQXV0aG9yIENvbGxhYm9yYXRpb24gTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCgphdXRob3JfY29sbGFiX3RibF9ncmFwaCA8LSAKICBncmFwaF9mcm9tX2FkamFjZW5jeV9tYXRyaXgod29zX3Njb3B1c19hdXRob3JfY29sbGFiX21hdHJpeCAsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlID0gInVuZGlyZWN0ZWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2VpZ2h0ZWQgPSBUUlVFLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlhZyA9IEZBTFNFKSB8PiAKICBhc190YmxfZ3JhcGgoYWNhX2lncmFwaCwgZGlyZWN0ZWQgPSBGQUxTRSApIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSkgfD4gCiAgYXJyYW5nZShkZXNjKGRlZ3JlZSkpIHw+IAogIHNsaWNlKDE6MzApCgphdXRob3JfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCA8LSAKICBhdXRob3JfY29sbGFiX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgZmlsdGVyKHdlaWdodCA+IDEpIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+CiAgZmlsdGVyKGNvbXBvbmVudHMgPT0gMSkgfD4KICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSwKICAgICAgICAgY29tbXVuaXR5ID0gYXMuZmFjdG9yKGdyb3VwX2xvdXZhaW4oKSkgKQoKYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgZ2dyYXBoKGxheW91dCA9ICJrayIpICsgCiAgZ2VvbV9lZGdlX2xpbmsoYWxwaGEgPSAuMjUsIAogICAgICAgICAgICAgICAgIGFlcyh3aWR0aCA9IHdlaWdodCkpICsKICBnZW9tX25vZGVfcG9pbnQoYWVzKGNvbG91ciA9IGNvbW11bml0eSwgCiAgICAgICAgICAgICAgICAgICAgICBzaXplID0gZGVncmVlKSkgKwogIGdlb21fbm9kZV90ZXh0KGFlcyhsYWJlbCA9IG5hbWUpLCByZXBlbCA9IFRSVUUpICsKICB0aGVtZV9ncmFwaCgpCmBgYAoKIyMjIENvdW50cnkgQ29sbGFib3JhdGlvbiBOZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19jb3VudHJ5X2NvbGxhYl9tYXRyaXggPC0gCiAgYmlibGlvTmV0d29yayhNID0gd29zX3Njb3B1c190b3MkZGYsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY29sbGFib3JhdGlvbiIsIAogICAgICAgICAgICAgICAgbmV0d29yayA9ICJjb3VudHJpZXMiKQoKcGxvdF9jb3VudHJ5X2NvbGxhYiA8LSAKICBuZXR3b3JrUGxvdCh3b3Nfc2NvcHVzX2NvdW50cnlfY29sbGFiX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJDb3VudHJ5IENvbGxhYm9yYXRpb24gTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCgpjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGggPC0gCiAgZ3JhcGhfZnJvbV9hZGphY2VuY3lfbWF0cml4KHdvc19zY29wdXNfY291bnRyeV9jb2xsYWJfbWF0cml4ICwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGUgPSAidW5kaXJlY3RlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3ZWlnaHRlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaWFnID0gRkFMU0UpIHw+IAogIGFzX3RibF9ncmFwaChhY2FfaWdyYXBoLCBkaXJlY3RlZCA9IEZBTFNFICkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpKSB8PiAKICBhcnJhbmdlKGRlc2MoZGVncmVlKSkgfD4gCiAgc2xpY2UoMTozMCkKCmNvdW50cnlfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCA8LSAKICBjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShjb21wb25lbnRzID0gZ3JvdXBfY29tcG9uZW50cyh0eXBlID0gIndlYWsiKSkgfD4KICBmaWx0ZXIoY29tcG9uZW50cyA9PSAxKSB8PgogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpLAogICAgICAgICBjb21tdW5pdHkgPSBhcy5mYWN0b3IoZ3JvdXBfbG91dmFpbigpKSApCgpjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgZ2dyYXBoKGxheW91dCA9ICJrayIpICsgCiAgZ2VvbV9lZGdlX2xpbmsoYWxwaGEgPSAuMjUsIAogICAgICAgICAgICAgICAgIGFlcyh3aWR0aCA9IHdlaWdodCkpICsKICBnZW9tX25vZGVfcG9pbnQoYWVzKGNvbG91ciA9IGNvbW11bml0eSwgCiAgICAgICAgICAgICAgICAgICAgICBzaXplID0gZGVncmVlKSkgKwogIGdlb21fbm9kZV90ZXh0KGFlcyhsYWJlbCA9IG5hbWUpLCByZXBlbCA9IFRSVUUpICsKICB0aGVtZV9ncmFwaCgpCmBgYAoKIyMjIEtleXdvcmQgY28tb2NjdXJyZW5jZSBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19rZXl3b3JkX2NvX29jY3VycmVuY2VfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvLW9jY3VycmVuY2VzIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImtleXdvcmRzIiwgCiAgICAgICAgICAgICAgICBzZXAgPSAiOyIpCgpwbG90X25ldF9jb19vY2N1cnJlbmNlIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfa2V5d29yZF9jb19vY2N1cnJlbmNlX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJLZXl3b3JkIENvLW9jY3VycmVuY2UgTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCgprZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoIDwtIAogIGdyYXBoX2Zyb21fYWRqYWNlbmN5X21hdHJpeCh3b3Nfc2NvcHVzX2tleXdvcmRfY29fb2NjdXJyZW5jZV9tYXRyaXggLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZSA9ICJ1bmRpcmVjdGVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpYWcgPSBGQUxTRSkgfD4gCiAgYXNfdGJsX2dyYXBoKGFjYV9pZ3JhcGgsIGRpcmVjdGVkID0gRkFMU0UgKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCkpIHw+IAogIGFycmFuZ2UoZGVzYyhkZWdyZWUpKSB8PiAKICBzbGljZSgxOjMwKQoKa2V5d29yZF9jb19vY2N1cnJlbmNlX3dlaWdodF90YmwgPC0gCiAga2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgc2VsZWN0KHdlaWdodCkgfD4gCiAgYXMuZGF0YS5mcmFtZSgpCgp0aHJlc2hvbGQgPC0gCiAgcXVhbnRpbGUoa2V5d29yZF9jb19vY2N1cnJlbmNlX3dlaWdodF90YmwgfD4gCiAgICAgICAgICAgICBzZWxlY3Qod2VpZ2h0KSB8PiAKICAgICAgICAgICAgIHB1bGwoKSwgCiAgICAgICAgICAgcHJvYnMgPSAwLjgwKQoKa2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaF9maWx0ZXJlZCA8LSAKICBrZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBmaWx0ZXIod2VpZ2h0ID49IHRocmVzaG9sZCkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShjb21wb25lbnRzID0gZ3JvdXBfY29tcG9uZW50cyh0eXBlID0gIndlYWsiKSkgfD4gCiAgZmlsdGVyKGNvbXBvbmVudHMgPT0gMSkgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCksCiAgICAgICAgIGNvbW11bml0eSA9IGFzLmZhY3Rvcihncm91cF9sb3V2YWluKCkpICkKCmtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgZ2dyYXBoKGxheW91dCA9ICJrayIpICsgCiAgZ2VvbV9lZGdlX2xpbmsoYWxwaGEgPSAuMjUsIAogICAgICAgICAgICAgICAgIGFlcyh3aWR0aCA9IHdlaWdodCkpICsKICBnZW9tX25vZGVfcG9pbnQoYWVzKGNvbG91ciA9IGNvbW11bml0eSwgCiAgICAgICAgICAgICAgICAgICAgICBzaXplID0gZGVncmVlKSkgKwogIGdlb21fbm9kZV90ZXh0KGFlcyhsYWJlbCA9IG5hbWUpLCByZXBlbCA9IFRSVUUpICsKICB0aGVtZV9ncmFwaCgpCmBgYAoKIyMgRmlndXJlIDQuIFRyZWUgb2YgU2NpZW5jZQoKIyMjIFRyZWUgb2YgU2NpZW5jZQoKYGBge3J9CnRyZWVfb2Zfc2NpZW5jZQpgYGAKCiMjIyBDbHVzdGVyaW5nIGFuYWx5c2lzCgpGaW5kaW5nIHRoZSBjbHVzdGVycwoKYGBge3J9Cm5vZGVzIDwtICAjIENyZWF0ZSBhIGRhdGFmcmFtZSB3aXRoIHRoZSBmdWxsbmFtZSBvZiBhcnRpY2xlcyAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c190b3MkZ3JhcGgpJG5hbWUpIHw+IAogIGxlZnRfam9pbih3b3Nfc2NvcHVzX3RvcyRub2RlcywgCiAgICAgICAgICAgIGJ5ID0gYygibmFtZSIgPSAiSURfVE9TIikpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSA8LSAjIEFkZCB0aGUgYXJ0aWNsZSBuYW1lcyB0byB0aGUgY2l0YXRpb24gbmV0d29yawogIHdvc19zY29wdXNfdG9zJGdyYXBoIHw+IAogIGlncmFwaDo6c2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJmdWxsX25hbWUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGluZGV4ID0gVih3b3Nfc2NvcHVzX3RvcyRncmFwaCkkbmFtZSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IG5vZGVzJENJVEUpCgpub2Rlc18xIDwtICMgQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggc3ViZmllbGRzIChjbHVzdGVycykKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpJG5hbWUsCiAgICAgICAgIGNsdXN0ZXIgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xKSRzdWJmaWVsZCwKICAgICAgICAgZnVsbF9uYW1lID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkkZnVsbF9uYW1lKQoKbm9kZXNfMiA8LSAjIENvdW50IHRoZSBudW1iZXIgb2YgYXJ0aWNsZXMgcGVyIGNsdXN0ZXIKICBub2Rlc18xIHw+IAogIGNvdW50KGNsdXN0ZXIsIHNvcnQgPSBUUlVFKSB8PiAKICBtdXRhdGUoY2x1c3Rlcl8xID0gcm93X251bWJlcigpKSB8PiAKICBzZWxlY3QoY2x1c3RlciwgY2x1c3Rlcl8xKQoKbm9kZXNfMyA8LSAKICBub2Rlc18xIHw+IAogIGxlZnRfam9pbihub2Rlc18yKSB8PiAKICByZW5hbWUoc3ViZmllbGQgPSBjbHVzdGVyXzEpIHw+IAogIHNlbGVjdChuYW1lLCBmdWxsX25hbWUsIHN1YmZpZWxkKQoKZWRnZV9saXN0IDwtIAogIGdldC5lZGdlbGlzdCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShTb3VyY2UgPSBYMSwgVGFyZ2V0ID0gWDIpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgPC0gCiAgZ3JhcGguZGF0YS5mcmFtZShkID0gZWRnZV9saXN0LCAKICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICB2ZXJ0aWNlcyA9IG5vZGVzXzMpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgc3VtbWFyeSgpCmBgYAoKQ2hvb3NpbmcgY2x1c3RlcnMKCldlIHByb3Bvc2VkIHRoZSB0aXBwaW5nIHBvaW50IG9wdGlvbiB0byBjaG9vc2UgdGhlIG51bWJlciBvZiBjbHVzdGVycy4gU2VlIHRoaXMgcGFwZXI6CgpodHRwczovL3d3dy5uYXR1cmUuY29tL2FydGljbGVzL3M0MTU5OC0wMjEtODUwNDEtOAoKYGBge3J9CmNsdXN0ZXJzIDwtIAogIHRpYmJsZShjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkKSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkKCmNsdXN0ZXJzIHw+IAogIGdncGxvdChhZXMoeCA9IHJlb3JkZXIoY2x1c3RlciwgbiksIHkgPSBuKSkgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDMpICsKICBsYWJzKHggPSAiQ2x1c3RlcnMiLCB5ID0gIk51bWJlciBvZiBwYXBlcnMiKSArCiAgdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNiAsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmYW1pbHkgPSAgIkFyaWFsIiksCiAgICAgICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNiwgZmFtaWx5ID0gIkFyaWFsIiksCiAgICAgICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyLCBmYW1pbHkgPSAiQXJpYWwiKSwgCiAgICAgICAgYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDEyLCBmYW1pbHkgPSAiQXJpYWwiKSkKYGBgCgpSZW1vdmluZyBub3QgY2hvc2VuIGNsdXN0ZXJzCgpgYGB7cn0Kd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEgJiAjIGZpbHRlciBjbHVzdGVycyAKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMiAmCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDMgICYKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gNCkpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMgfD4gCiAgc3VtbWFyeSgpCmBgYAoKIyMjIENsdXN0ZXIgMQoKYGBge3J9CnBhbCA8LSBicmV3ZXIucGFsKDgsIkRhcmsyIikKCm5vZGVzX2Z1bGxfZGF0YSA8LSAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRuYW1lLAogICAgICAgICBjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkLAogICAgICAgICBmdWxsX25hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkZnVsbF9uYW1lKQoKY2x1c3Rlcl8xIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEpKQoKY2x1c3Rlcl8xX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzEgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzEpJHZlY3RvcikKCmNsdXN0ZXJfMV9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMSkgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+ICMgVG9rZW5pemF0aW9uCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+ICAjIFJlbW92aW5nIHN0b3Agd29yZHMKICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInpvbmUiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY29hc3RhbCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAibWFuYWdlbWVudCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW5jZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbnRvbWV0cmljIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gIm1hbmFnZW1lbnQiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYmlibGlvbWV0cmljIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJldmlldyIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJqb3VybmFsIikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAoKIyMjIENsdXN0ZXIgMgoKYGBge3J9CmNsdXN0ZXJfMiA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAyKSkKCmNsdXN0ZXJfMl9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8yIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8yKSR2ZWN0b3IpCgpjbHVzdGVyXzJfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDIpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4KICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInpvbmUiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY29hc3RhbCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAibWFuYWdlbWVudCIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW5jZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbnRvbWV0cmljIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInZ1bG5lcmFiaWxpdHkiKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIyMgQ2x1c3RlciAzCgpgYGB7cn0KCmNsdXN0ZXJfMyA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAzKSkKCmNsdXN0ZXJfM19wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8zIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8zKSR2ZWN0b3IpCgpjbHVzdGVyXzNfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8zX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDMpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4KICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhIAogIGZpbHRlcih3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJ6b25lIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImNvYXN0YWwiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gIm1hbmFnZW1lbnQiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW5jZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbnRvbWV0cmljIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInZ1bG5lcmFiaWxpdHkiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiam91cm5hbCIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJpbmZvcm1hdGlvbiIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKIyMjIENsdXN0ZXIgNAoKYGBge3J9CgpjbHVzdGVyXzQgPC0gCiAgd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIGRlbGV0ZS52ZXJ0aWNlcyh3aGljaChWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gNCkpCgpjbHVzdGVyXzRfcGFnZV9yYW5rIDwtIAogIGNsdXN0ZXJfNCB8PiAKICBzZXQudmVydGV4LmF0dHJpYnV0ZShuYW1lID0gInBhZ2VfcmFuayIsIAogICAgICAgICAgICAgICAgICAgICAgIHZhbHVlID0gcGFnZV9yYW5rKGNsdXN0ZXJfNCkkdmVjdG9yKQoKY2x1c3Rlcl80X2RmIDwtIAogIHRpYmJsZShuYW1lID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRuYW1lLAogICAgICAgICBmdWxsX25hbWUgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJGZ1bGxfbmFtZSwKICAgICAgICAgcGFnZV9yYW5rID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRwYWdlX3JhbmssCiAgICAgICAgIGNsdXN0ZXIgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJHN1YmZpZWxkLCkKCm5vZGVzX2Z1bGxfZGF0YSB8PiAKICBmaWx0ZXIoY2x1c3RlciA9PSA0KSB8PiAKICBzZWxlY3QoZnVsbF9uYW1lKSB8PiAKICBtdXRhdGUoZnVsbF9uYW1lID0gc3RyX2V4dHJhY3QoZnVsbF9uYW1lLCBTUEMgJVIlICAjIFJlZ3VsYXIgZXhwcmVzc2lvbnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUoV1JEKSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU1BDICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsIEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfcmVtb3ZlKGZ1bGxfbmFtZSwgT1BFTl9QQVJFTiAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBlYXRlZChER1QsIDQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENMT1NFX1BBUkVOICVSJQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfdHJpbShmdWxsX25hbWUpKSAgfD4gCiAgdW5uZXN0X3Rva2VucyhvdXRwdXQgPSB3b3JkLCBpbnB1dCA9IGZ1bGxfbmFtZSkgfD4gCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+IAogIGZpbHRlcih3b3JkICE9ICJkb2kiLAogICAgICAgICAhc3RyX2RldGVjdCh3b3JkLCAiWzAtOV0iKSkgfD4gICMgV29TIGRhdGEKICBmaWx0ZXIod29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiem9uZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJjb2FzdGFsIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJtYW5hZ2VtZW50IiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJhbmFseXNpcyIpLCAKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpZW5jZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbnRvbWV0cmljIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInZ1bG5lcmFiaWxpdHkiKSkgfD4KICBjb3VudCh3b3JkLCBzb3J0ID0gVFJVRSkgfD4gCiAgd2l0aCh3b3JkY2xvdWQod29yZCwgCiAgICAgICAgICAgICAgICAgbiwgCiAgICAgICAgICAgICAgICAgcmFuZG9tLm9yZGVyID0gRkFMU0UsIAogICAgICAgICAgICAgICAgIG1heC53b3JkcyA9IDUwLCAKICAgICAgICAgICAgICAgICBjb2xvcnM9cGFsKSkKYGBgCgojIEV4cG9ydGluZyBmaWxlcwoKYGBge3J9Cgp3cml0ZV9jc3Yod29zX3Njb3B1c190b3MkZGYsICJ3b3Nfc2NvcHVzX3Rvcy5jc3YiKSAjIEV4cG9ydGluZyBhbGwgZGF0YSBtZXJnZWQKCndyaXRlX2Nzdih0YWJsZV8xLCAidGFibGVfMS5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSAxCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnksICJ0YWJsZV8yXy5jc3YiKSAgIyBFeHBvcnRpbmcgdGFibGUgMgp3cml0ZV9jc3Yod29zX3Njb3B1c19hdXRob3JzLCAidGFibGVfMy5jc3YiKSAjIEV4cG9ydGluZyB0YWJsZSAzCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwsICJ0YWJsZV80LmNzdiIpICMgRXhwb3J0aW5nIHRhYmxlIDQKCgp3cml0ZV9jc3YobGFuZ3VhZ2VzLCAiZmlndXJlXzEuY3N2IikgIyBFeHBvcnRpbmcgZGF0YSBmaWd1cmUgMSAKd3JpdGVfY3N2KGZpZ3VyZV8yX2RhdGEsICJmaWd1cmVfMi5jc3YiKSAjIEV4cG9ydGluZyBkYXRhIGZpZ3VyZSAyCgp3cml0ZS5ncmFwaCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmssICJjaXRhdGlvbl9uZXR3b3JrX2Z1bGwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnRpbmcgZ3JhcGgKd3JpdGUuZ3JhcGgod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzLCAKICAgICAgICAgICAgIndvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya19jbHVzdGVycy5ncmFwaG1sIiwgCiAgICAgICAgICAgICJncmFwaG1sIikKCmFjYV9ncmFwaG1sX25vZGVzIDwtIAogIGFjYV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIGFzX3RpYmJsZSgpIHw+IAogIHJlbmFtZShhdXRob3IgPSBuYW1lKSB8PiAKICByb3duYW1lc190b19jb2x1bW4oIm5hbWUiKQoKYWNhX2dyYXBobWxfZWRnZXMgPC0gCiAgYWNhX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgYXNfdGliYmxlKCkgCgphY2FfZ3JhcGhtbCA8LSAKICBncmFwaF9mcm9tX2RhdGFfZnJhbWUoZCA9IGFjYV9ncmFwaG1sX2VkZ2VzLCAKICAgICAgICAgICAgICAgICAgICAgICAgZGlyZWN0ZWQgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgICAgIHZlcnRpY2VzID0gYWNhX2dyYXBobWxfbm9kZXMpCgp3cml0ZV9ncmFwaChhY2FfZ3JhcGhtbCwgImFjYV9ncmFwaC5ncmFwaG1sIiwgImdyYXBobWwiKSAjIEV4cG9ydCBhdXRob3IgY28tY2l0YXRpb24gZ3JhcGgKCmF1dGhvcl9jb2xsYWJfZ3JhcGhtbF9ub2RlcyA8LSAKICBhdXRob3JfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgYXNfdGliYmxlKCkgfD4gCiAgcmVuYW1lKGF1dGhvciA9IG5hbWUpIHw+IAogIHJvd25hbWVzX3RvX2NvbHVtbigibmFtZSIpCgphdXRob3JfY29sbGFiX2dyYXBobWxfZWRnZXMgPC0gCiAgYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpIAoKYXV0aG9yX2NvbGxhYl9ncmFwaG1sIDwtIAogIGdyYXBoX2Zyb21fZGF0YV9mcmFtZShkID0gYXV0aG9yX2NvbGxhYl9ncmFwaG1sX2VkZ2VzLCAKICAgICAgICAgICAgICAgICAgICAgICAgZGlyZWN0ZWQgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgICAgIHZlcnRpY2VzID0gYXV0aG9yX2NvbGxhYl9ncmFwaG1sX25vZGVzKQoKd3JpdGVfZ3JhcGgoYXV0aG9yX2NvbGxhYl9ncmFwaG1sLCAiYXV0aG9yX2NvbGxhYl9ncmFwaG1sLmdyYXBobWwiLCAiZ3JhcGhtbCIpICMgRXhwb3J0IGF1dGhvciBjby1jaXRhdGlvbiBncmFwaAoKY291bnRyeV9jb2xsYWJfZ3JhcGhtbF9ub2RlcyA8LSAKICBjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIGFzX3RpYmJsZSgpIHw+IAogIHJlbmFtZShhdXRob3IgPSBuYW1lKSB8PiAKICByb3duYW1lc190b19jb2x1bW4oIm5hbWUiKQoKY291bnRyeV9jb2xsYWJfZ3JhcGhtbF9lZGdlcyA8LSAKICBjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpIAoKY291bnRyeV9jb2xsYWJfZ3JhcGhtbCA8LSAKICBncmFwaF9mcm9tX2RhdGFfZnJhbWUoZCA9IGNvdW50cnlfY29sbGFiX2dyYXBobWxfZWRnZXMsIAogICAgICAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBjb3VudHJ5X2NvbGxhYl9ncmFwaG1sX25vZGVzKQoKd3JpdGVfZ3JhcGgoY291bnRyeV9jb2xsYWJfZ3JhcGhtbCwgImNvdW50cnlfY29sbGFiX2dyYXBobWwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnQgYXV0aG9yIGNvLWNpdGF0aW9uIGdyYXBoCgprZXl3b3JkX2NvX29jY3VycmVuY2VfZ3JhcGhtbF9ub2RlcyA8LSAKICBrZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBhc190aWJibGUoKSB8PiAKICByZW5hbWUoYXV0aG9yID0gbmFtZSkgfD4gCiAgcm93bmFtZXNfdG9fY29sdW1uKCJuYW1lIikKCmtleXdvcmRfY29fb2NjdXJyZW5jZV9ncmFwaG1sX2VkZ2VzIDwtIAogIGtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgYWN0aXZhdGUoZWRnZXMpIHw+IAogIGFzX3RpYmJsZSgpICAKCmtleXdvcmRfY29fb2NjdXJyZW5jZV9ncmFwaG1sIDwtIAogIGdyYXBoX2Zyb21fZGF0YV9mcmFtZShkID0ga2V5d29yZF9jb19vY2N1cnJlbmNlX2dyYXBobWxfZWRnZXMsIAogICAgICAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBrZXl3b3JkX2NvX29jY3VycmVuY2VfZ3JhcGhtbF9ub2RlcykKCndyaXRlX2dyYXBoKGtleXdvcmRfY29fb2NjdXJyZW5jZV9ncmFwaG1sLCAia2V5d29yZF9jb19vY2N1cnJlbmNlX2dyYXBobWwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnQgYXV0aG9yIGNvLWNpdGF0aW9uIGdyYXBoCgp3cml0ZS5jc3YodHJlZV9vZl9zY2llbmNlLCAidHJlZV9vZl9zY2llbmNlLmNzdiIpICMgRXhwb3J0aW5nIFRyZWUgb2YgU2NpZW5jZQoKd3JpdGUuY3N2KGNsdXN0ZXJfMV9kZiwgImNsdXN0ZXJfMS5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDEKd3JpdGUuY3N2KGNsdXN0ZXJfMl9kZiwgImNsdXN0ZXJfMi5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDIKd3JpdGUuY3N2KGNsdXN0ZXJfM19kZiwgImNsdXN0ZXJfMy5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDMKd3JpdGUuY3N2KGNsdXN0ZXJfNF9kZiwgImNsdXN0ZXJfNC5jc3YiKSAjIEV4cG9ydGluZyBjbHVzdGVyIDQKCndyaXRlLmNzdihub2Rlc19mdWxsX2RhdGEsICJub2Rlc19mdWxsX2RhdGEuY3N2IikgIyBFeHBvcnRpbmcgYWxsIG5vZGVzCmBgYAoK