library(stargazer)
library(readr)
ejemplo_regresion <- read_csv("C:/doc R/ejemplo_regresion.csv")

#corriendo el modelo de regresion

regresion<-lm(formula = Y~X1+X2,data = ejemplo_regresion)

stargazer(regresion,title = "modelo estimado",type = "text")
## 
## modelo estimado
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                  Y             
## -----------------------------------------------
## X1                           0.237***          
##                               (0.056)          
##                                                
## X2                          -0.0002***         
##                              (0.00003)         
##                                                
## Constant                     1.564***          
##                               (0.079)          
##                                                
## -----------------------------------------------
## Observations                    25             
## R2                             0.865           
## Adjusted R2                    0.853           
## Residual Std. Error       0.053 (df = 22)      
## F Statistic           70.661*** (df = 2; 22)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

pruebas de normalidad de los rsiduos

library(fitdistrplus)
ajuste_normal<-fitdist(data = regresion$residuals,distr = "norm")
plot(ajuste_normal)

prueba de JB

library(normtest)
jb.norm.test(regresion$residuals)
## 
##  Jarque-Bera test for normality
## 
## data:  regresion$residuals
## JB = 0.93032, p-value = 0.4705

prueba KS (lillifomrs)

library(nortest)
lillie.test(regresion$residuals)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  regresion$residuals
## D = 0.082345, p-value = 0.9328

prueba de shapiro

shapiro.test(regresion$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  regresion$residuals
## W = 0.97001, p-value = 0.6453