3. Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The xaxis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, pˆm1 = 1 − pˆm2. You could make this plot by hand, but it will be much easier to make in R.

gini=function(m1){
  return(2*(m1*(1-m1)))
}
ent=function(m1){
  m2=1-m1
  return(-((m1*log(m1))+(m2*log(m2))))
}
classerr=function(m1){
  m2=1-m1
  return(1-max(m1,m2))

}
err=seq(0,1,by=0.01)
c.err=sapply(err,classerr)
g=sapply(err,gini)
e=sapply(err,ent)
d=data.frame(Gini.Index=g,Cross.Entropy=e)
plot(err,c.err,type='l',col="green",xlab="m1",ylim=c(0,0.8),ylab="value")
matlines(err,d,col=c("orange","blue"))

9. This problem involves the OJ data set which is part of the ISLR package.

library(ISLR)
attach(OJ)
View(OJ)
  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
set.seed(1)
train <- sample(1:nrow(OJ), 800)
OJ.training <- OJ[train, ]
OJ.testing <- OJ[-train, ]
  1. Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
tree.oj <- tree(Purchase ~ ., data = OJ.training)
summary(tree.oj)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.training)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

the MSE is 0.1588 with 8 nodes.

  1. Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.
tree.oj
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

The split criterion is LoyalCH < 0.035 (Node 8), the number of observations in that branch is 57 with a deviance of 10.07 and an overall prediction for the branch of MM. Less than 2% of the observations in that branch take the value of CH, and the remaining 98% take the value of MM.

  1. Create a plot of the tree, and interpret the results.
plot(tree.oj)
text(tree.oj, pretty = 0)

The top three nodes contain LoyalCH, so this variable is the most important indicator of Purchase.

  1. Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
tree.pred <- predict(tree.oj, OJ.testing, type = "class")
table(tree.pred, OJ.testing$Purchase)
##          
## tree.pred  CH  MM
##        CH 160  38
##        MM   8  64
1 - (160 + 64) / 270
## [1] 0.1703704

The error rate is 17%

  1. Apply the cv.tree() function to the training set in order to determine the optimal tree size.
cv.oj <- cv.tree(tree.oj, FUN = prune.misclass)
cv.oj
## $size
## [1] 9 8 7 4 2 1
## 
## $dev
## [1] 150 150 149 158 172 315
## 
## $k
## [1]       -Inf   0.000000   3.000000   4.333333  10.500000 151.000000
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
  1. Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree size", ylab = "Deviance")

  1. Which tree size corresponds to the lowest cross-validated classification error rate?

The 7-node tree is the smallest tree with the lowest classification error rate.

  1. Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
prune.oj <- prune.misclass(tree.oj, best = 7)
plot(prune.oj)
text(prune.oj, pretty = 0)

  1. Compare the training error rates between the pruned and unpruned trees. Which is higher?
summary(tree.oj)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.training)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800
summary(prune.oj)
## 
## Classification tree:
## snip.tree(tree = tree.oj, nodes = c(4L, 10L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff" "PctDiscMM"    
## Number of terminal nodes:  7 
## Residual mean deviance:  0.7748 = 614.4 / 793 
## Misclassification error rate: 0.1625 = 130 / 800

The MSE is higher for pruned tree.

  1. Compare the test error rates between the pruned and unpruned trees. Which is higher?

For the pruned tree:

prune.pred <- predict(prune.oj, OJ.testing, type = "class")
table(prune.pred, OJ.testing$Purchase)
##           
## prune.pred  CH  MM
##         CH 160  36
##         MM   8  66
1 - (160 + 66) / 270
## [1] 0.162963

For the unpruned tree:

prune.pred <- predict(tree.oj, OJ.testing, type = "class")
table(prune.pred, OJ.testing$Purchase)
##           
## prune.pred  CH  MM
##         CH 160  38
##         MM   8  64
1 - (160 + 64) / 270
## [1] 0.1703704

The pruned tree had an error of 17%, this is higher than the unpruned tree.