1. Naturalness
#Define variables
PP$Nat_1_GFFB <- PP$GFFB_Naturalness_30
PP$Nat_2R_GFFB <- (100-PP$GFFB_Naturalness_31)
PP$Nat_3R_GFFB <- (100-PP$GFFB_Naturalness_35)
PP$Nat_4R_GFFB <- (100-PP$GFFB_Naturalness_36)
PP$Nat_1_GFPRB <- PP$GFPRB_Naturalness_30
PP$Nat_2R_GFPRB <- (100-PP$GFPRB_Naturalness_31)
PP$Nat_3R_GFPRB <- (100-PP$GFPRB_Naturalness_35)
PP$Nat_4R_GFPRB <- (100-PP$GFPRB_Naturalness_36)
PP$Nat_1_CBB <- PP$CBB_Naturalness_30
PP$Nat_2R_CBB <- (100-PP$CBB_Naturalness_31)
PP$Nat_3R_CBB <- (100-PP$CBB_Naturalness_35)
PP$Nat_4R_CBB <- (100-PP$CBB_Naturalness_36)
PP$Nat_1_PBPB <- PP$PBPB_Naturalness_30
PP$Nat_2R_PBPB <- (100-PP$PBPB_Naturalness_31)
PP$Nat_3R_PBPB <- (100-PP$PBPB_Naturalness_35)
PP$Nat_4R_PBPB <- (100-PP$PBPB_Naturalness_36)
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- (100-PP$PBFB_Naturalness_31)
PP$Nat_3R_PBFB <- (100-PP$PBFB_Naturalness_35)
PP$Nat_4R_PBFB <- (100-PP$PBFB_Naturalness_36)
PP$Nat_1_VB <- PP$VB_Naturalness_30
PP$Nat_2R_VB <- (100-PP$VB_Naturalness_31)
PP$Nat_3R_VB <- (100-PP$VB_Naturalness_35)
PP$Nat_4R_VB <- (100-PP$VB_Naturalness_36)
##Naturalness Scales and Scores
###GFFB
####"Artificial" & "Natural" Naturalness Score
PP$Naturalness_Score_GFFB_AN <- rowMeans(PP [, c("Nat_1_GFFB" , "Nat_4R_GFFB")], na.rm=TRUE)
PP$Naturalness_Scale_GFFB_AN <- data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB)
describe(PP$Naturalness_Score_GFFB_AN)
## PP$Naturalness_Score_GFFB_AN
## n missing distinct Info Mean Gmd .05 .10
## 493 508 150 0.999 54.56 26.25 12.6 23.6
## .25 .50 .75 .90 .95
## 45.5 50.5 67.0 90.4 100.0
##
## lowest : 0.0 0.5 2.0 3.5 6.5, highest: 98.0 98.5 99.0 99.5 100.0
####Human Intervention Naturalness Score
PP$Naturalness_Score_GFFB_HI <- rowMeans(PP [, c("Nat_2R_GFFB", "Nat_3R_GFFB")], na.rm=TRUE)
PP$Naturalness_Scale_GFFB_HI <- data.frame(PP$Nat_2R_GFFB , PP$Nat_3R_GFFB)
describe(PP$Naturalness_Score_GFFB_HI)
## PP$Naturalness_Score_GFFB_HI
## n missing distinct Info Mean Gmd .05 .10
## 495 506 163 1 44.84 29.11 0.0 11.1
## .25 .50 .75 .90 .95
## 26.5 45.5 58.0 81.9 98.5
##
## lowest : 0.0 0.5 1.5 2.5 3.5, highest: 98.0 98.5 99.0 99.5 100.0
####Overall Nat Score
PP$Naturalness_Score_GFFB_Tot <- rowMeans(PP [, c( "Naturalness_Score_GFFB_AN" , "Naturalness_Score_GFFB_HI")], na.rm=TRUE)
describe(PP$Naturalness_Score_GFFB_Tot)
## PP$Naturalness_Score_GFFB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 495 506 217 1 49.63 23.6 21.13 25.25
## .25 .50 .75 .90 .95
## 34.88 48.25 62.12 79.40 93.55
##
## lowest : 0.00 0.25 1.00 6.25 7.00, highest: 98.25 98.50 99.25 99.50 100.00
PP$Naturalness_Scale_GFFB_Tot <- data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB, PP$Nat_2R_GFFB , PP$Nat_3R_GFFB)
describe(PP$Naturalness_Scale_GFFB_Tot)
## PP$Naturalness_Scale_GFFB_Tot
##
## 4 Variables 1001 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 493 508 94 0.998 58.55 34.46 0.0 13.2
## .25 .50 .75 .90 .95
## 35.0 61.0 84.0 100.0 100.0
##
## lowest : 0 1 4 5 6, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 491 510 99 0.998 50.56 36.45 0 6
## .25 .50 .75 .90 .95
## 26 48 79 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 492 509 96 0.999 43.06 34.86 0.00 0.10
## .25 .50 .75 .90 .95
## 18.75 39.00 66.00 92.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 494 507 97 0.999 46.88 34.72 0.00 7.00
## .25 .50 .75 .90 .95
## 23.00 45.00 68.75 97.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
describe(PP$Naturalness_Score_GFFB_Tot)
## PP$Naturalness_Score_GFFB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 495 506 217 1 49.63 23.6 21.13 25.25
## .25 .50 .75 .90 .95
## 34.88 48.25 62.12 79.40 93.55
##
## lowest : 0.00 0.25 1.00 6.25 7.00, highest: 98.25 98.50 99.25 99.50 100.00
sd(PP$Naturalness_Score_GFFB_Tot, na.rm = TRUE)
## [1] 21.23928
##GFPRB
####"Artificial" & "Natural" Naturalness Score
PP$Naturalness_Score_GFPRB_AN <- rowMeans(PP [, c("Nat_1_GFPRB" , "Nat_4R_GFPRB")], na.rm=TRUE)
PP$Naturalness_Scale_GFPRB_AN <- data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB)
describe(PP$Naturalness_Score_GFPRB_AN)
## PP$Naturalness_Score_GFPRB_AN
## n missing distinct Info Mean Gmd .05 .10
## 509 492 142 0.994 68.56 27.98 28.0 42.8
## .25 .50 .75 .90 .95
## 50.0 66.0 95.0 100.0 100.0
##
## lowest : 0.0 1.0 3.0 4.0 4.5, highest: 98.0 98.5 99.0 99.5 100.0
####Human Intervention Naturalness Score
PP$Naturalness_Score_GFPRB_HI <- rowMeans(PP [, c("Nat_2R_GFPRB" , "Nat_3R_GFPRB")], na.rm=TRUE)
PP$Naturalness_Scale_GFPRB_HI <- data.frame( PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB)
describe(PP$Naturalness_Score_GFPRB_HI)
## PP$Naturalness_Score_GFPRB_HI
## n missing distinct Info Mean Gmd .05 .10
## 510 491 168 0.999 57.02 32.44 10.00 17.45
## .25 .50 .75 .90 .95
## 38.50 50.75 83.38 100.00 100.00
##
## lowest : 0.0 0.5 2.0 2.5 6.0, highest: 98.0 98.5 99.0 99.5 100.0
####Overall Nat Score
PP$Naturalness_Score_GFPRB_Tot <- rowMeans(PP [, c( "Naturalness_Score_GFPRB_AN" , "Naturalness_Score_GFPRB_HI")], na.rm=TRUE)
describe(PP$Naturalness_Score_GFPRB_Tot)
## PP$Naturalness_Score_GFPRB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 510 491 238 0.999 62.76 27.24 26.34 32.98
## .25 .50 .75 .90 .95
## 45.25 59.38 81.50 98.78 100.00
##
## lowest : 0.00 1.75 7.00 10.75 11.75, highest: 99.00 99.25 99.50 99.75 100.00
PP$Naturalness_Scale_GFPRB_Tot <- data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB)
describe(PP$Naturalness_Score_GFPRB_Tot)
## PP$Naturalness_Score_GFPRB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 510 491 238 0.999 62.76 27.24 26.34 32.98
## .25 .50 .75 .90 .95
## 45.25 59.38 81.50 98.78 100.00
##
## lowest : 0.00 1.75 7.00 10.75 11.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness_Score_GFPRB_Tot, na.rm = TRUE)
## [1] 23.75184
##CBB
####"Artificial" & "Natural" Naturalness Score
PP$Naturalness_Score_CBB_AN <- rowMeans(PP [, c("Nat_1_CBB" , "Nat_4R_CBB")], na.rm=TRUE)
PP$Naturalness_Scale_CBB_AN <- data.frame(PP$Nat_1_CBB , PP$Nat_4R_CBB)
describe(PP$Naturalness_Score_CBB_AN)
## PP$Naturalness_Score_CBB_AN
## n missing distinct Info Mean Gmd .05 .10
## 511 490 146 0.998 39.11 28.55 0.00 0.00
## .25 .50 .75 .90 .95
## 17.75 47.50 52.00 70.00 83.50
##
## lowest : 0.0 0.5 1.0 2.0 2.5, highest: 98.0 98.5 99.0 99.5 100.0
####Human Intervention Naturalness Score
PP$Naturalness_Score_CBB_HI <- rowMeans(PP [, c( "Nat_2R_CBB" , "Nat_3R_CBB")], na.rm=TRUE)
PP$Naturalness_Scale_CBB_HI <- data.frame( PP$Nat_2R_CBB , PP$Nat_3R_CBB)
describe(PP$Naturalness_Score_CBB_HI)
## PP$Naturalness_Score_CBB_HI
## n missing distinct Info Mean Gmd .05 .10
## 512 489 143 0.994 29.65 27.85 0.000 0.000
## .25 .50 .75 .90 .95
## 6.375 27.750 48.000 60.950 75.225
##
## lowest : 0.0 0.5 1.0 1.5 2.0, highest: 94.0 97.5 99.0 99.5 100.0
####Overall Nat Score
PP$Naturalness_Score_CBB_Tot <- rowMeans(PP [, c( "Naturalness_Score_CBB_AN" , "Naturalness_Score_CBB_HI")], na.rm=TRUE)
describe(PP$Naturalness_Score_CBB_Tot)
## PP$Naturalness_Score_CBB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 512 489 221 0.999 34.37 24.53 0.00 0.55
## .25 .50 .75 .90 .95
## 17.69 35.50 49.06 59.00 67.22
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 96.25 98.50 99.50 99.75 100.00
PP$Naturalness_Scale_CBB_Tot <- data.frame(PP$Nat_1_CBB , PP$Nat_4R_CBB, PP$Nat_2R_CBB , PP$Nat_3R_CBB)
describe(PP$Naturalness_Scale_CBB_Tot)
## PP$Naturalness_Scale_CBB_Tot
##
## 4 Variables 1001 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 511 490 96 0.996 45.14 38.99 0.0 0.0
## .25 .50 .75 .90 .95
## 12.5 46.0 74.0 97.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 510 491 93 0.992 33.03 33.57 0.00 0.00
## .25 .50 .75 .90 .95
## 6.25 25.50 49.00 82.10 98.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 510 491 88 0.988 29.97 30.76 0.00 0.00
## .25 .50 .75 .90 .95
## 3.00 25.00 47.75 73.00 85.55
##
## lowest : 0 1 2 3 4, highest: 91 94 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 510 491 89 0.988 29.28 30.48 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 24.00 47.00 70.00 84.55
##
## lowest : 0 1 2 3 4, highest: 94 95 96 99 100
## --------------------------------------------------------------------------------
describe(PP$Naturalness_Score_CBB_Tot)
## PP$Naturalness_Score_CBB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 512 489 221 0.999 34.37 24.53 0.00 0.55
## .25 .50 .75 .90 .95
## 17.69 35.50 49.06 59.00 67.22
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 96.25 98.50 99.50 99.75 100.00
sd(PP$Naturalness_Score_CBB_Tot, na.rm = TRUE)
## [1] 21.74882
##PBPB
####"Artificial" & "Natural" Naturalness Score
PP$Naturalness_Score_PBPB_AN<- rowMeans(PP [, c("Nat_1_PBPB" , "Nat_4R_PBPB")], na.rm=TRUE)
PP$Naturalness_Scale_PBPB_AN <- data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB)
describe(PP$Naturalness_Score_PBPB_AN)
## PP$Naturalness_Score_PBPB_AN
## n missing distinct Info Mean Gmd .05 .10
## 524 477 166 0.999 48.66 27.31 0.00 9.30
## .25 .50 .75 .90 .95
## 36.88 50.00 61.00 82.35 92.50
##
## lowest : 0.0 0.5 1.0 1.5 2.0, highest: 97.5 98.5 99.0 99.5 100.0
####Human Intervention Naturalness Score
PP$Naturalness_Score_PBPB_HI<- rowMeans(PP [, c("Nat_2R_PBPB" , "Nat_3R_PBPB")], na.rm=TRUE)
PP$Naturalness_Scale_PBPB_HI <- data.frame( PP$Nat_2R_PBPB , PP$Nat_3R_PBPB)
describe(PP$Naturalness_Score_PBPB_HI)
## PP$Naturalness_Score_PBPB_HI
## n missing distinct Info Mean Gmd .05 .10
## 524 477 155 0.999 36.03 26.35 0.00 0.50
## .25 .50 .75 .90 .95
## 19.00 37.50 50.00 63.50 78.27
##
## lowest : 0.0 0.5 1.0 1.5 2.0, highest: 97.5 98.5 99.0 99.5 100.0
####Overall Nat Score
PP$Naturalness_Score_PBPB_Tot <- rowMeans(PP [, c( "Naturalness_Score_PBPB_AN" , "Naturalness_Score_PBPB_HI")], na.rm=TRUE)
describe(PP$Naturalness_Score_PBPB_Tot)
## PP$Naturalness_Score_PBPB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 524 477 234 1 42.34 22.48 2.288 12.900
## .25 .50 .75 .90 .95
## 29.688 44.000 53.750 67.100 74.962
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 92.25 96.75 97.00 98.50 100.00
PP$Naturalness_Scale_PBPB_Tot <- data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB)
describe(PP$Naturalness_Scale_PBPB_Tot)
## PP$Naturalness_Scale_PBPB_Tot
##
## 4 Variables 1001 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 477 99 0.998 53.99 36.26 0 3
## .25 .50 .75 .90 .95
## 29 58 79 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 477 97 0.998 43.33 34.89 0 0
## .25 .50 .75 .90 .95
## 20 39 68 87 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 479 96 0.998 39.82 33.02 0.0 0.0
## .25 .50 .75 .90 .95
## 18.0 35.0 61.0 83.9 97.0
##
## lowest : 0 1 2 3 4, highest: 95 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 479 88 0.996 32.13 28.98 0.0 0.0
## .25 .50 .75 .90 .95
## 11.0 29.0 48.0 70.9 82.0
##
## lowest : 0 1 2 3 4, highest: 94 97 98 99 100
## --------------------------------------------------------------------------------
describe(PP$Naturalness_Score_PBPB_Tot)
## PP$Naturalness_Score_PBPB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 524 477 234 1 42.34 22.48 2.288 12.900
## .25 .50 .75 .90 .95
## 29.688 44.000 53.750 67.100 74.962
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 92.25 96.75 97.00 98.50 100.00
sd(PP$Naturalness_Score_PBPB_Tot, na.rm = TRUE)
## [1] 20.13492
##PBFB
####"Artificial" & "Natural" Naturalness Score
PP$Naturalness_Score_PBFB_AN<- rowMeans(PP [, c("Nat_1_PBFB" ,"Nat_4R_PBFB")], na.rm=TRUE)
PP$Naturalness_Scale_PBFB_AN <- data.frame(PP$Nat_1_PBFB , PP$Nat_4R_PBFB)
describe(PP$Naturalness_Score_PBFB_AN)
## PP$Naturalness_Score_PBFB_AN
## n missing distinct Info Mean Gmd .05 .10
## 481 520 155 0.999 45.28 28.35 0.0 2.0
## .25 .50 .75 .90 .95
## 28.0 50.0 55.5 79.5 89.0
##
## lowest : 0.0 0.5 1.0 1.5 2.0, highest: 96.5 97.0 98.0 98.5 100.0
####Human Intervention Naturalness Score
PP$Naturalness_Score_PBFB_HI<- rowMeans(PP [, c( "Nat_2R_PBFB" , "Nat_3R_PBFB")], na.rm=TRUE)
PP$Naturalness_Scale_PBFB_HI <- data.frame( PP$Nat_2R_PBFB , PP$Nat_3R_PBFB)
describe(PP$Naturalness_Score_PBFB_HI)
## PP$Naturalness_Score_PBFB_HI
## n missing distinct Info Mean Gmd .05 .10
## 480 521 148 0.998 32.02 27.51 0.00 0.00
## .25 .50 .75 .90 .95
## 12.00 29.50 48.50 62.00 75.15
##
## lowest : 0.0 1.0 2.0 2.5 3.0, highest: 95.0 96.5 98.0 99.5 100.0
####Overall Nat Score
PP$Naturalness_Score_PBFB_Tot <- rowMeans(PP [, c( "Naturalness_Score_PBFB_AN" , "Naturalness_Score_PBFB_HI")], na.rm=TRUE)
describe(PP$Naturalness_Score_PBFB_Tot)
## PP$Naturalness_Score_PBFB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 481 520 222 1 38.67 23.24 0.00 5.25
## .25 .50 .75 .90 .95
## 25.50 40.25 50.75 62.50 72.75
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 87.50 88.25 97.25 97.50 100.00
PP$Naturalness_Scale_PBFB_Tot <- data.frame(PP$Nat_1_PBFB , PP$Nat_4R_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB)
describe(PP$Naturalness_Scale_PBFB_Tot)
## PP$Naturalness_Scale_PBFB_Tot
##
## 4 Variables 1001 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 520 97 0.998 51.85 38.41 0 0
## .25 .50 .75 .90 .95
## 23 53 81 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 521 95 0.996 38.67 35.17 0 0
## .25 .50 .75 .90 .95
## 12 34 63 86 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 521 95 0.996 34.45 32.51 0.00 0.00
## .25 .50 .75 .90 .95
## 10.00 28.50 53.50 76.00 93.05
##
## lowest : 0 1 2 3 4, highest: 94 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 478 523 86 0.994 29.47 29.62 0.00 0.00
## .25 .50 .75 .90 .95
## 6.25 24.50 45.75 71.00 91.60
##
## lowest : 0 1 2 3 4, highest: 95 96 97 99 100
## --------------------------------------------------------------------------------
describe(PP$Naturalness_Score_PBFB_Tot)
## PP$Naturalness_Score_PBFB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 481 520 222 1 38.67 23.24 0.00 5.25
## .25 .50 .75 .90 .95
## 25.50 40.25 50.75 62.50 72.75
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 87.50 88.25 97.25 97.50 100.00
sd(PP$Naturalness_Score_PBFB_Tot, na.rm = TRUE)
## [1] 20.69724
##VB
####"Artificial" & "Natural" Naturalness Score
PP$Naturalness_Score_VB_AN <- rowMeans(PP [, c("Nat_1_VB" , "Nat_4R_VB")], na.rm=TRUE)
PP$Naturalness_Scale_VB_AN <- data.frame(PP$Nat_1_VB , PP$Nat_4R_VB)
describe(PP$Naturalness_Score_VB_AN)
## PP$Naturalness_Score_VB_AN
## n missing distinct Info Mean Gmd .05 .10
## 472 529 155 0.999 57.5 28.09 10.28 25.00
## .25 .50 .75 .90 .95
## 46.50 51.00 75.62 96.50 100.00
##
## lowest : 0.0 0.5 1.0 2.5 3.0, highest: 98.0 98.5 99.0 99.5 100.0
####Human Intervention Naturalness Score
PP$Naturalness_Score_VB_HI <- rowMeans(PP [, c( "Nat_2R_VB" , "Nat_3R_VB")], na.rm=TRUE)
PP$Naturalness_Scale_VB_HI <- data.frame( PP$Nat_2R_VB , PP$Nat_3R_VB )
describe(PP$Naturalness_Score_VB_HI)
## PP$Naturalness_Score_VB_HI
## n missing distinct Info Mean Gmd .05 .10
## 472 529 159 1 45.28 29.9 1.775 11.000
## .25 .50 .75 .90 .95
## 25.000 45.750 59.125 84.450 99.225
##
## lowest : 0.0 0.5 1.0 1.5 2.0, highest: 97.0 98.0 99.0 99.5 100.0
####Overall Nat Score
PP$Naturalness_Score_VB_Tot <- rowMeans(PP [, c( "Naturalness_Score_VB_AN" , "Naturalness_Score_VB_HI")], na.rm=TRUE)
describe(PP$Naturalness_Score_VB_Tot)
## PP$Naturalness_Score_VB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 472 529 237 1 51.39 25.22 16.50 25.00
## .25 .50 .75 .90 .95
## 36.19 49.00 65.50 84.00 96.36
##
## lowest : 0.00 1.25 3.00 3.25 4.25, highest: 99.00 99.25 99.50 99.75 100.00
PP$Naturalness_Scale_VB_Tot <- data.frame(PP$Nat_1_VB , PP$Nat_4R_VB, PP$Nat_2R_VB , PP$Nat_3R_VB )
describe(PP$Naturalness_Scale_VB_Tot)
## PP$Naturalness_Scale_VB_Tot
##
## 4 Variables 1001 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 529 93 0.996 65.13 32.6 4.55 21.00
## .25 .50 .75 .90 .95
## 50.00 71.00 89.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 529 96 0.998 49.87 37.8 0 4
## .25 .50 .75 .90 .95
## 21 48 80 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 529 99 0.998 49.76 36.59 0 6
## .25 .50 .75 .90 .95
## 24 48 78 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 529 91 0.999 40.8 33.64 0.00 2.00
## .25 .50 .75 .90 .95
## 19.00 34.00 61.25 91.80 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
## --------------------------------------------------------------------------------
describe(PP$Naturalness_Score_VB_Tot)
## PP$Naturalness_Score_VB_Tot
## n missing distinct Info Mean Gmd .05 .10
## 472 529 237 1 51.39 25.22 16.50 25.00
## .25 .50 .75 .90 .95
## 36.19 49.00 65.50 84.00 96.36
##
## lowest : 0.00 1.25 3.00 3.25 4.25, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness_Score_VB_Tot, na.rm = TRUE)
## [1] 22.39438
2. Connectedness to Nature
#Connectedness to Nature Item Definitions
PP$CNS_1 <- as.numeric(as.character(PP$CNS_29))
PP$CNS_2 <- as.numeric(as.character(PP$CNS_30))
PP$CNS_3 <- as.numeric(as.character(PP$CNS_31))
PP$CNS_4 <- as.numeric(as.character(PP$CNS_32))
PP$CNS_5 <- as.numeric(as.character(PP$CNS_33))
#Descriptives
describe(PP$CNS_1)
## PP$CNS_1
## n missing distinct Info Mean Gmd .05 .10
## 998 3 96 0.997 66.43 28.01 21.85 31.00
## .25 .50 .75 .90 .95
## 52.00 69.00 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CNS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_2)
## PP$CNS_2
## n missing distinct Info Mean Gmd .05 .10
## 998 3 94 0.997 69.99 25.6 26.85 38.00
## .25 .50 .75 .90 .95
## 55.00 72.00 87.00 100.00 100.00
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$CNS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_3)
## PP$CNS_3
## n missing distinct Info Mean Gmd .05 .10
## 998 3 98 0.995 69.36 27.6 21.0 35.7
## .25 .50 .75 .90 .95
## 53.0 72.0 90.0 100.0 100.0
##
## lowest : 0 1 3 5 6, highest: 96 97 98 99 100
range(PP$CNS_3, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_4)
## PP$CNS_4
## n missing distinct Info Mean Gmd .05 .10
## 997 4 100 0.999 58.81 32.39 0.0 15.0
## .25 .50 .75 .90 .95
## 40.0 63.0 80.0 97.8 100.0
##
## lowest : 0 1 2 3 4, highest: 95 96 97 99 100
range(PP$CNS_4, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_5)
## PP$CNS_5
## n missing distinct Info Mean Gmd .05 .10
## 998 3 101 0.999 59.39 31.57 2.0 19.0
## .25 .50 .75 .90 .95
## 41.0 63.0 81.0 97.3 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CNS_5, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$CNS_1, main = 'I often feel a sense of oneness with the natural world around me.')

hist(PP$CNS_2, main = 'I think of the natural world as a community to which I belong.')

hist(PP$CNS_3, main = 'I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.')

hist(PP$CNS_4, main = 'My personal welfare is independent of the welfare of the natural world.')

hist(PP$CNS_5, main = 'When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.')

#Recode items 4 and 5
PP$CNS_4R <- (100 - PP$CNS_4)
PP$CNS_5R <- (100 - PP$CNS_5)
PP$CNS_Scale2 <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3, PP$CNS_4R, PP$CNS_5R)
psych::alpha(PP$CNS_Scale2)
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(PP$CNS_Scale2): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.CNS_4R PP.CNS_5R ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = PP$CNS_Scale2)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.17 0.22 0.44 0.055 0.29 0.044 58 12 -0.19
##
## lower alpha upper 95% confidence boundaries
## 0.08 0.17 0.25
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1 0.0024 0.013 0.27 0.0033 0.013 0.054 0.14 -0.19
## PP.CNS_2 -0.0669 -0.060 0.21 -0.0143 -0.056 0.058 0.14 -0.22
## PP.CNS_3 -0.0946 -0.084 0.21 -0.0197 -0.077 0.059 0.14 -0.21
## PP.CNS_4R 0.3121 0.376 0.52 0.1310 0.603 0.035 0.21 0.14
## PP.CNS_5R 0.3958 0.455 0.55 0.1728 0.836 0.032 0.17 0.17
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 998 0.57 0.62 0.560 0.197 66 25
## PP.CNS_2 998 0.60 0.66 0.644 0.274 70 23
## PP.CNS_3 998 0.63 0.67 0.651 0.278 69 25
## PP.CNS_4R 997 0.38 0.31 -0.048 -0.079 41 29
## PP.CNS_5R 998 0.28 0.21 -0.168 -0.170 41 28
#Drop reverse coded items
PP$CNS_Scale <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3)
psych::alpha(PP$CNS_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CNS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.79 0.79 0.71 0.55 3.7 0.012 69 20 0.55
##
## lower alpha upper 95% confidence boundaries
## 0.76 0.79 0.81
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1 0.73 0.73 0.58 0.58 2.7 0.017 NA 0.58
## PP.CNS_2 0.69 0.69 0.53 0.53 2.3 0.019 NA 0.53
## PP.CNS_3 0.71 0.71 0.55 0.55 2.4 0.019 NA 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 998 0.83 0.83 0.68 0.61 66 25
## PP.CNS_2 998 0.84 0.85 0.73 0.64 70 23
## PP.CNS_3 998 0.84 0.84 0.71 0.63 69 25
PP$CNS_Score <- rowMeans(PP [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
#Center
describe(PP$CNS_Score)
## PP$CNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 998 3 240 1 57.52 13 40.00 44.94
## .25 .50 .75 .90 .95
## 50.60 56.40 61.80 71.86 80.23
##
## lowest : 18.0 20.0 21.8 22.2 22.6, highest: 98.0 98.8 99.6 99.8 100.0
PP$CNS_Score.c <- PP$CNS_Score - 57.53
#Correlation CCB
cor(PP$CNS_Scale, use= "complete.obs")
## PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.CNS_1 1.0000000 0.5470854 0.5321022
## PP.CNS_2 0.5470854 1.0000000 0.5768547
## PP.CNS_3 0.5321022 0.5768547 1.0000000