Encontrar probabilidades de acuerdo a la distribución binomial.
Se identifican ejercicios casos de la literatura de distribuciones de probabilidad binomial y se realizan cálculos de probabilidades, se determinan el valor esperado y se calcula la varianza y la desviación.
Los ejercicios que se presenta utilizan funciones relacionadas con la distribución binomial dbinom() pbinom(), rbinom() en algunos ejercicios del caso se utiliza la función f.prob.binom() previamente codificada y que encapsula la fórmula para determinar probabilidad binomiales.
El experimento de lanzar al aire una moneda es un ejemplo sencillo de una importante variable aleatoria discreta llamada variable aleatoria binomial. Muchos experimentos prácticos resultan en datos similares a que salgan cara o cruz al tirar la moneda [@mendenhall_introduccion_2006]
Un experimento binomial es el que tiene estas cinco características:
El experimento consiste en \(n\) intentos idénticos.
Cada intento resulta en uno de dos resultados, el resultado uno se llama éxito, ‘S’, y el otro se llama fracaso, ‘F’.
La probabilidad de éxito en un solo intento es igual a \(p\) y es igual de un intento a otro. La probabilidad de fracaso es igual a \(q= (1 - p)\).
Los intentos son independientes.
El interés es el valor de \(x\), o sea, el número de éxitos observado durante los \(n\) intentos, para \(x = 0, 1, 2, …, n.\) [@mendenhall_introduccion_2006].
Un experimiento de Bernoulli puede tener como resultado un éxito con probabilidad \(p\) y un fracaso con probabilidad \(q = 1 − p\). Entonces, la distribución de probabilidad de la variable aleatoria binomial \(x\), el número de éxito \(k\) en \(n\) ensayos independientes [@walpole_probabilidad_2012]:
Fórmula:
\[prob(x=k) = \binom{n}{k} \cdot p^{k} \cdot q^{(n-k)} \] Para \[x = 0,1,2,3...n\] y recordando las combinaciones cuantos éxitos \(k\) en \(n\) ensayos.\[\binom{n}{k} = \frac{n!}{k!\cdot(n-k)!}\]
El valor esperado está dado por: \[\mu = n \cdot p\]
La varianza y la desviación estándar se determinan mediante: \[\sigma^{2} = n \cdot p \cdot(1-p)\] y \[\sigma = \sqrt{\sigma^{2}}\]
En programación R, para calcular la función de probabilidad binomial para un conjunto de valores discretos, \(x\), un número de ensayos \(n\) y una probabilidad de éxito \(p\) se puede hacer uso de la función dbinom().
De semejante forma, para calcular la probabilidad acumulada de una distribución binomial se puede utilizar la función pbinom() o para calcular la probabilidad de que una variable aleatoria \(x\) que sigue una distribución binomial tome valores menores o iguales a \(x\) puedes hacer uso de la función pbinom() [@rcoderbinom].
En los siguientes ejercicios también se utilizan funciones de paqutes base de R para la comprensión de la distribución binomial.
[@rcoder]
[@statology2019]
library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
Se carga función de servicio github o de manera local
# source("../funciones/funciones.para.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Enero%20Junio%202022/funciones/funciones.para.distribuciones.r")
Se determina una semilla porque algunos ejercicios calculan valores aleatorios.
set.seed(2022)
Tienda de ropa MartinClothingStore [@anderson_estadistica_2008]
De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30 o 30%
Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada
Encontrar la probabilidad de que compren dos clientes
Encontrar la probabilidad de que compren los tres próximos clientes.
Encontrar la probabilidad de que sean menor o igual que dos.
Calcular la probabilidad de que sean mayor que dos
Determinar el valor esperado y su significado
Determinar la varianza y la desviación estándar y si significado
Interpretar
Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
con pbinom() en lugar de cumsum()
tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ))
plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram")
Encontrar la probabilidad de que compren dos clientes
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 2 0.189 0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es 2 es igual a : 0.189"
Usando dbinom()
dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189
Encontrar la probabilidad de que compren los tres próximos clientes
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 3 0.027 1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es 3 es igual a : 0.027"
Usando dbinom()
dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027
Encontrar la probabilidad de que sean menor o igual que dos
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 2 0.189 0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a 2 es igual a : 0.973"
Usando pbinom()
pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973
La expresión lower.tail = FALSE como atributo de la función pbinom() significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de \(x\), o lo que es lo mismo, \(1 - prob.acum(x)\), \(1 - 0.97 = 0.27\).
pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027
Determinar el valor esperado y su significado
\[\mu = n \cdot p\] Siendo \(p\) el éxito de la probabilidad y \(n\) el número de experimentos
VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es: 0.9"
El valor esperado \(VE\) significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.
Determinar la varianza y la desviación estándar y su significado.
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 0.63"
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 0.79"
Pendiente …
Un jugador encesta con probabilidad 0.55. [@noauthor_distribucion_nodate]:
Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad
Determinar la probabilidad de encestar cuatro tiros \(P(x=4)\)
Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\)
Determinar la probabilidad de encestar al menos tres \(P(x \leq 3)\) o, \(P.acum(x = 3)\)
Determinar el valor esperado VE
Determinar la varianza y su desviación estándard
Interpretar el ejercicio
Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3
Se inicializan valores:
x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000
Dos formas de visualizar las probabilidades
plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) ))
plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")
Calcular la probabilidad de encestar cuatro tiros \(P(x=4)\)
dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502
Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\)
dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064
Usando la función pbinom()
pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823
o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.
valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 3 0.3032184 0.5584823
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 3.3"
El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los \(n=\) 6 tiros.
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 1.48"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 1.22"
De el valor esperado 3.3 hay una desviación aproximada de 1.2186058 hacia arriba o hacia abajo.
La probabilidad de que un paciente se recupere de una rara enfermedad sanguínea es \(0.4\). Si se sabe que \(15\) personas contraen tal enfermedad,
Determine tabla de probabilidad de 1 al 15
Visualizar la gráfica de probabilidades
¿Cuál es la probabilidad de que sobrevivan al menos diez,
¿Cuál es la probabilidad de que sobrevivan de tres a ocho?, y
¿Cuál es la probabilidad de que sobrevivan exactamente cinco?
¿Cuál es el valor esperado ‘VE’ o la esperanza media?
¿Cual es la varianza y la desviación estándar?
¿Cómo se comportarían las probabilidades para un experimento de 100 personas?
Interpretación del ejercicio [@walpole_probabilidad_2012].
Inicializar valores
x <- 0:15
n <- 15
exito <- 0.40
Se construye la tabla de probabilidades con las funciones construidas que se encuentran en enlace citado al principi del documento y con la función cumsum() para el acumulado de la probabilidad.
tabla <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla
## x f.prob.x f.acum.x
## 1 0 0.000470184985 0.000470185
## 2 1 0.004701849846 0.005172035
## 3 2 0.021941965947 0.027114001
## 4 3 0.063387901624 0.090501902
## 5 4 0.126775803249 0.217277706
## 6 5 0.185937844765 0.403215550
## 7 6 0.206597605294 0.609813156
## 8 7 0.177083661681 0.786896817
## 9 8 0.118055774454 0.904952592
## 10 9 0.061214105272 0.966166697
## 11 10 0.024485642109 0.990652339
## 12 11 0.007419891548 0.998072231
## 13 12 0.001648864788 0.999721096
## 14 13 0.000253671506 0.999974767
## 15 14 0.000024159191 0.999998926
## 16 15 0.000001073742 1.000000000
La gráfica se presenta con la función plot() que requiere las coordenadas de x & y siendo estás las variables aleatorias discretas y las probabilidades respectivamente.
plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")
Se requiere la suma de las probabilidades endonde \(P(\leq 10)\) o bien \(P(x=0) + P(x=1) + P(x=2) ... + P(x=10)\) o mediante la función acumulada de la probabilidad.\(F(x=10)\). Como se necesita la probabilidad acumulada entonces se usa pbinom().
x = 10
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de que se enfermen menos que diez es: ", prob, " o el ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se enfermen menos que diez es: 0.990652339224576 o el 99.07 %"
Se requiere el valor acumulado entre tres y ocho es decir, \(F(x=8) - F(x=2)\) , o sumar las probabilidades de tres a ocho \(P(x=3) + P(x=4) + P(x=5) + P(x=6)+ P(x=6)+P(x=7)+P(x=8)\)
Se usa la resta usando la función pbinom()
x1 = 2 #
x2 = 8
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito)
paste ("La probabilidad de que se enfermen de tres a ocho es: ", prob, " o el ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se enfermen de tres a ocho es: 0.877838591066112 o el 87.78 %"
Se comprueba sumando las probabilidades de tres a ocho
sum(dbinom(x = 3:8, size = n, prob = exito))
## [1] 0.8778386
o sumando los renglones de las probabilidades de tres a ocho de la tabla de probabilidad.
sum(filter(tabla, x %in% 3:8) %>%
select(f.prob.x))
## [1] 0.8778386
Aquí se calcula la probabilidad con la función dbinom() cuando \(P(x=5)\)
x = 5
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de que se enfermen menos que diez es: ", prob, " o el ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se enfermen menos que diez es: 0.185937844764672 o el 18.59 %"
Se comprueba la probabilidad extrayendo con la función filter() el registro de la tabla de distribución cuando \(x==10\).
filter(tabla, x==5)
## x f.prob.x f.acum.x
## 1 5 0.1859378 0.4032156
Se determina el valor medio o el valor esperado de la tabla de distribución.
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 6"
Se espera que se recuperen 6 en promedio
Se calcula la varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 3.6"
Se determina la desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 1.9"
Siendo la desviación una medida de variabilidad significa que tanto estarían las probabilidades por encima o por debajo del valor esperado.
Con la función de aleatoriedad rbinom() se calculan las probabilidades de una muestra de \(100\), con ello las proporciones o frecuencias relativas siendo los elementos de la función \(n\) la cantidad de experimentos que serían \(100\), size el tamaño del estudio original es decir \(15\) y prob la probabilidad de éxito.
La variable llamada variables contiene los valores aleatorios de la muestra y la frecuencia es la cantidad de ocasiones de cada variable aleatoria.
muestra <- 100
variables <- rbinom(n = muestra, size = n, prob = exito)
variables
## [1] 8 7 4 6 4 7 3 3 5 7 1 4 4 6 6 4 7 6 6 8 8 6 6 4 4
## [26] 9 6 11 6 7 6 7 5 6 4 3 8 6 8 7 7 6 7 6 8 4 8 7 5 8
## [51] 4 5 7 5 7 6 5 6 6 4 6 6 8 8 3 8 6 6 4 6 8 8 8 7 6
## [76] 3 6 7 6 6 5 6 8 7 4 5 3 5 6 8 4 4 7 6 5 5 4 10 7 7
frecuencia = table(variables)
frecuencia
## variables
## 1 3 4 5 6 7 8 9 10 11
## 1 6 16 11 29 18 16 1 1 1
Las probabilidades relativas de la muestra
probs <- prop.table(frecuencia)
probs
## variables
## 1 3 4 5 6 7 8 9 10 11
## 0.01 0.06 0.16 0.11 0.29 0.18 0.16 0.01 0.01 0.01
tablaexp <- data.frame(x=1:length(frecuencia), f.prob.x = as.vector(probs), f.acum.x = cumsum(as.vector(probs)))
tablaexp
## x f.prob.x f.acum.x
## 1 1 0.01 0.01
## 2 2 0.06 0.07
## 3 3 0.16 0.23
## 4 4 0.11 0.34
## 5 5 0.29 0.63
## 6 6 0.18 0.81
## 7 7 0.16 0.97
## 8 8 0.01 0.98
## 9 9 0.01 0.99
## 10 10 0.01 1.00
A partir de la nueva tabla del experimento se compara con la tabla original en dos gráficas
Con la función par(mfrow=c(1,2)) se puede ver dos gráficas tipo plot() al mismo tiempo en el mismo renglón.
par(mfrow=c(1,2))
plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = "X", ylab= "f(x)", main = "15 pacientes")
plot(x = tablaexp$x, y=tablaexp$f.prob.x, type = "h", xlab = "X", ylab= "f(x)", xlim = c(0,15), ylim = range(0, 0.20), main="Simulando 100 pacientes")
¿Cómo se comportan las probabilidades del estudio con 15 y del experimento o simulación con 100 pacientes?, muy similares las probabilidades.
Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del \(60%\). Se pide lo siguiente:
Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen
¿Cuál es la probabilidad de que aprueben 5 alumnos?
¿Cuál es la probabilidad de que aprueben 10 alumnos?
¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?
¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?
¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?
Determinar el valor esperado VE y su significado.
Determinar la varianza y su desviación estándard y su significado.
Se incializan valores
x <- 0:30
n <- 30
exito <- 0.60
Se construye la tabla
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 0 0.000000000001152922 0.000000000001152922
## 2 1 0.000000000051881468 0.000000000053034389
## 3 2 0.000000001128421923 0.000000001181456312
## 4 3 0.000000015797906917 0.000000016979363229
## 5 4 0.000000159953807533 0.000000176933170762
## 6 5 0.000001247639698760 0.000001424572869522
## 7 6 0.000007797748117251 0.000009222320986774
## 8 7 0.000040102704603007 0.000049325025589781
## 9 8 0.000172942913600469 0.000222267939190250
## 10 9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000
plot(x=tabla$x, y=tabla$f.prob.x,
type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")
Se calcula la probabilidad de \(P(x=0) + P(x=1) + P(x=2) ... + P(15)\) o la probabilidad acumulada cuando \(F(x=15)\)
prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilidad de que aprueben 15 o menos es de ", prob)
## [1] "La probabilidad de que aprueben 15 o menos es de 0.175369053506829"
Se calcula la probabilidad acumulada de \(F(x=20) - F(x=10)\)
prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de: 0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571
Se debe calcular \(P(x\geq26)\) o restar del el valor acumulado de 25 a 1. \(1 - F(x=26)\)
Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.
prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de 0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074
El valor esperado es la cantidad de alumnos que aprueben el examen.
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 18"
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 7.2"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 2.68"
La desviación como parte de la varianza significa la cantidad de alumnos que puede variar con respecto al valor medio \(VE\) previamente calculado.
Suponga que un grupo de agentes de tránsito sale a una vía principal para revisar el estado de los autobuses de transporte intermunicipal. De datos históricos se sabe que un 10% de los camiones generan una mayor cantidad de humo de la permitida. En cada jornada los agentes revisan siempre 18 unidades (autobuses), asuma que el estado de un autobus es independiente del estado de los otros buses. [@hernández2021].
Construir la tabla de distribución
Visualizar la densidad o las probabilidades para cada variable discreta
Calcular la probabilidad de que se encuentren exactamente 2 buses que generan una mayor cantidad de humo de la permitida.
Calcular la probabilidad de que el número de autobuses que sobrepasan el límite de generación de gases sea al menos 4.
Calcular la probabilidad de que existan MAS DE TRES (a partir de CUATRO) autobuses que emitan gases por encima de lo permitido en la norma
Calcular el valor esperado.
Calcular la varianza y la desviación.
Generar una muestra aleatoria de 100 valores y comparar las frecuencias relativas con las probabilidad originales.
Interpretar el caso.
Se inicializan variables
x <- 0:18
n <- 18
exito <- 0.10
Se construye la tabla de distribución con dbimom() y dbinom().
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 0 0.150094635296999152 0.1500946
## 2 1 0.300189270593998137 0.4502839
## 3 2 0.283512088894331660 0.7337960
## 4 3 0.168007163789233555 0.9018032
## 5 4 0.070002984912180641 0.9718061
## 6 5 0.021778706417122911 0.9935848
## 7 6 0.005243021915233281 0.9988279
## 8 7 0.000998670840996817 0.9998265
## 9 8 0.000152574711818958 0.9999791
## 10 9 0.000018836384175180 0.9999980
## 11 10 0.000001883638417518 0.9999998
## 12 11 0.000000152213205456 1.0000000
## 13 12 0.000000009865670724 1.0000000
## 14 13 0.000000000505931832 1.0000000
## 15 14 0.000000000020076660 1.0000000
## 16 15 0.000000000000594864 1.0000000
## 17 16 0.000000000000012393 1.0000000
## 18 17 0.000000000000000162 1.0000000
## 19 18 0.000000000000000001 1.0000000
Se muestran las probabilidades de cada variable discreta usando directamente la función plot()
plot(x=tabla$x, y=tabla$f.prob.x,
type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")
x <- 2
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de encontrar dos camiones contaminantes es de : ", prob)
## [1] "La probabilidad de encontrar dos camiones contaminantes es de : 0.283512088894332"
Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cero y cuatro. \(P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4)\) o lo que es lo mismo \(P(x\leq 4)\) o en términos de probabilidad acumulada \(F(x=4)\).
x <- 4
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de: 0.971806143486743"
Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cuatro y dieciocho. \(P(x=4) + P(x=5) + P(x=6) + P(x=7) ... + ...P(x=18)\) o lo que es lo mismo \(P(x \geq 3)\) o en términos de probabilidad acumulada \(F(x=18) - F(x=4)\).
x1 <- 4
x2 <- 18
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de: 0.0281938565132567"
Se puede encontrar usando la expresión lower.tail = FALSE
pbinom(q = 4, size = n, prob = exito, lower.tail = FALSE)
## [1] 0.02819386
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 1.8"
El valor esperado de 1.8 significa el valor medio de camiones que se pueden encontrar que contaminan
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 1.62"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 1.27"
La varianza y de manera más específica la desviación significa que tanto varía (se aleja o se acerca) con respeto al valor medio o valor esperado \(VE\) el número de autobuses con probabilidad de encontrarse con partículas contaminantes.
Se utiliza la función rbinom() para simular un estudio y generar valores aleatorios conforme a la distribución binomial.
El estudio o la simulación se hace con un experimento de 100 camiones, a partir del estudio previo de 18 camiones.
n.muestra <- 100
muestra <- rbinom(n = n.muestra, size = n, prob = exito)
muestra
## [1] 4 1 3 3 2 1 3 0 2 5 3 1 2 1 3 2 1 2 2 3 0 1 0 0 1 3 2 2 1 3 2 2 0 2 3 0 5
## [38] 4 2 3 1 2 4 0 2 2 2 4 4 1 1 4 3 4 4 4 4 0 3 2 1 3 4 1 3 2 0 5 0 0 2 1 4 1
## [75] 4 1 6 0 2 0 3 1 2 2 2 2 1 2 6 2 1 2 0 3 3 4 2 1 2 3
Calculando frecuencias relativas
Con la función table() se determina la frecuencia y con prop.table() se encuentra la frecuencia relativa.
table(muestra)
## muestra
## 0 1 2 3 4 5 6
## 14 20 29 18 14 3 2
data.frame(prob = prop.table(table(muestra)))
## prob.muestra prob.Freq
## 1 0 0.14
## 2 1 0.20
## 3 2 0.29
## 4 3 0.18
## 5 4 0.14
## 6 5 0.03
## 7 6 0.02
Se observa que los mayores valores probabilísticos está entre 1 y 3, entonces la muestra se relaciona con los valores probabilísticos del origen de los datos.
La distribucion binomial exige que solo den 2 resultados finales, ya sea positivo o negativo. en este caso se ven ejemplos aplicados de ésta, se resuelven varios ejercicios de distribucion binomial con multiples poblaciones y condiciones. En el ejercicio de los autobuses se observa en la tabla que hay una probabilidad mayor para que pasen 2 camiones con un total de 30% de probabilidad, y de que sean 2 exactamente los contaminantes de de 28%. La probabilidad de que se encuentren menos de 4 camiones es de 97% haciendo asi que la probabilidad de encontrar mas de 4 sea alrededor de 3%.