Loading packages for the analysis and read the csv file into R

library(readr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
library(corrplot)
## corrplot 0.92 loaded
library(knitr)
women_entp = read_csv("Data.csv")
## Rows: 50 Columns: 10
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (5): Country, Level of development, European Union Membership, Currency,...
## dbl (5): Number, Women Entrepreneurship Index, Entrepreneurship Index, Infla...
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Dataset Overview

View(women_entp)
summary(women_entp)
##      Number        Country          Level of development
##  Min.   : 1.00   Length:50          Length:50           
##  1st Qu.:14.25   Class :character   Class :character    
##  Median :29.00   Mode  :character   Mode  :character    
##  Mean   :29.46                                          
##  3rd Qu.:43.75                                          
##  Max.   :60.00                                          
##  European Union Membership   Currency         Women Entrepreneurship Index
##  Length:50                 Length:50          Min.   :25.30               
##  Class :character          Class :character   1st Qu.:36.23               
##  Mode  :character          Mode  :character   Median :44.05               
##                                               Mean   :47.72               
##                                               3rd Qu.:59.48               
##                                               Max.   :74.80               
##  Entrepreneurship Index Inflation rate   Inflation Type    
##  Min.   :24.80          Min.   :-2.250   Length:50         
##  1st Qu.:31.80          1st Qu.:-0.450   Class :character  
##  Median :42.35          Median : 0.600   Mode  :character  
##  Mean   :46.80          Mean   : 2.652                     
##  3rd Qu.:65.20          3rd Qu.: 3.650                     
##  Max.   :77.60          Max.   :26.500                     
##  Female Labor Force Participation Rate
##  Min.   :13.00                        
##  1st Qu.:55.90                        
##  Median :61.05                        
##  Mean   :58.55                        
##  3rd Qu.:67.55                        
##  Max.   :82.30
str(women_entp)
## spec_tbl_df [50 x 10] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Number                               : num [1:50] 16 22 55 8 35 44 57 17 51 53 ...
##  $ Country                              : chr [1:50] "El Salvador" "Greece" "Switzerland" "Bosnia and Herzegovina" ...
##  $ Level of development                 : chr [1:50] "Developing" "Developed" "Developed" "Developing" ...
##  $ European Union Membership            : chr [1:50] "Not Member" "Member" "Not Member" "Not Member" ...
##  $ Currency                             : chr [1:50] "National Currency" "Euro" "National Currency" "National Currency" ...
##  $ Women Entrepreneurship Index         : num [1:50] 29.9 43 63.7 31.6 58.5 57.7 36.6 55.4 55.9 52.5 ...
##  $ Entrepreneurship Index               : num [1:50] 29.6 42 68.6 28.9 54.6 47.4 32.1 60.2 53.1 49.6 ...
##  $ Inflation rate                       : num [1:50] -2.25 -1.7 -1.1 -1 -0.9 -0.9 -0.9 -0.88 -0.5 -0.5 ...
##  $ Inflation Type                       : chr [1:50] "Deflation" "Deflation" "Deflation" "Deflation" ...
##  $ Female Labor Force Participation Rate: num [1:50] 55.7 42.5 74.7 51.9 66.5 56.6 62 68.5 61 52.7 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   Number = col_double(),
##   ..   Country = col_character(),
##   ..   `Level of development` = col_character(),
##   ..   `European Union Membership` = col_character(),
##   ..   Currency = col_character(),
##   ..   `Women Entrepreneurship Index` = col_double(),
##   ..   `Entrepreneurship Index` = col_double(),
##   ..   `Inflation rate` = col_double(),
##   ..   `Inflation Type` = col_character(),
##   ..   `Female Labor Force Participation Rate` = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>

Data Transformation

women_entp$`Level of development`<- as.factor(women_entp$`Level of development`)
women_entp$`European Union Membership`<- as.factor(women_entp$`European Union Membership`)
women_entp$Country <- as.factor(women_entp$Country)
women_entp$Currency <- as.factor(women_entp$Currency)

Multicollinearity, Data Scaling & Normalized Distribution

Multicollinearity:

lm = lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+ `Inflation rate`+`Female Labor Force Participation Rate`, data = women_entp)
summary(lm)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Inflation rate` + `Female Labor Force Participation Rate`, 
##     data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.1599  -3.4630  -0.5734   2.7374   9.0744 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              5.24174    3.62596   1.446   0.1551
## `Entrepreneurship Index`                 0.74512    0.05268  14.145   <2e-16
## `Inflation rate`                        -0.29493    0.14791  -1.994   0.0521
## `Female Labor Force Participation Rate`  0.14328    0.05627   2.546   0.0143
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Inflation rate`                        .  
## `Female Labor Force Participation Rate` *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.168 on 46 degrees of freedom
## Multiple R-squared:  0.8789, Adjusted R-squared:  0.871 
## F-statistic: 111.3 on 3 and 46 DF,  p-value: < 2.2e-16
vif(lm)
##                `Entrepreneurship Index`                        `Inflation rate` 
##                                1.311407                                1.176966 
## `Female Labor Force Participation Rate` 
##                                1.137753

Because all rate are <4 The three independent variables are not highly correlated with each other

Data Scaling:

summary(women_entp[,c(6,7,8,10)])
##  Women Entrepreneurship Index Entrepreneurship Index Inflation rate  
##  Min.   :25.30                Min.   :24.80          Min.   :-2.250  
##  1st Qu.:36.23                1st Qu.:31.80          1st Qu.:-0.450  
##  Median :44.05                Median :42.35          Median : 0.600  
##  Mean   :47.72                Mean   :46.80          Mean   : 2.652  
##  3rd Qu.:59.48                3rd Qu.:65.20          3rd Qu.: 3.650  
##  Max.   :74.80                Max.   :77.60          Max.   :26.500  
##  Female Labor Force Participation Rate
##  Min.   :13.00                        
##  1st Qu.:55.90                        
##  Median :61.05                        
##  Mean   :58.55                        
##  3rd Qu.:67.55                        
##  Max.   :82.30

We notice that while Entrepreneurship Index & Female Labor Force Participation Rate range from 0 - 100, inflation rate has a different range

Let’s try to scale this variable to see if we can have a better model:

women_entp_2 <- women_entp
women_entp_2$`Inflation rate` <- scale(women_entp_2$`Inflation rate`)
lm_post_scale <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+ `Inflation rate`+`Female Labor Force Participation Rate`, data= women_entp_2)
summary(lm_post_scale)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Inflation rate` + `Female Labor Force Participation Rate`, 
##     data = women_entp_2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.1599  -3.4630  -0.5734   2.7374   9.0744 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              4.45970    3.50200   1.273   0.2092
## `Entrepreneurship Index`                 0.74512    0.05268  14.145   <2e-16
## `Inflation rate`                        -1.59724    0.80102  -1.994   0.0521
## `Female Labor Force Participation Rate`  0.14328    0.05627   2.546   0.0143
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Inflation rate`                        .  
## `Female Labor Force Participation Rate` *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.168 on 46 degrees of freedom
## Multiple R-squared:  0.8789, Adjusted R-squared:  0.871 
## F-statistic: 111.3 on 3 and 46 DF,  p-value: < 2.2e-16

Model does not change, no need for scaling

Normal Distribution tests for continuous data:

scatterplotMatrix(women_entp[,c(6,7,8,10)])

summary(lm)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Inflation rate` + `Female Labor Force Participation Rate`, 
##     data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.1599  -3.4630  -0.5734   2.7374   9.0744 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              5.24174    3.62596   1.446   0.1551
## `Entrepreneurship Index`                 0.74512    0.05268  14.145   <2e-16
## `Inflation rate`                        -0.29493    0.14791  -1.994   0.0521
## `Female Labor Force Participation Rate`  0.14328    0.05627   2.546   0.0143
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Inflation rate`                        .  
## `Female Labor Force Participation Rate` *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.168 on 46 degrees of freedom
## Multiple R-squared:  0.8789, Adjusted R-squared:  0.871 
## F-statistic: 111.3 on 3 and 46 DF,  p-value: < 2.2e-16
lm1 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+ `Inflation rate`+`Female Labor Force Participation Rate`, data = women_entp)
summary(lm1)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Inflation rate` + `Female Labor Force Participation Rate`, 
##     data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.1599  -3.4630  -0.5734   2.7374   9.0744 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              5.24174    3.62596   1.446   0.1551
## `Entrepreneurship Index`                 0.74512    0.05268  14.145   <2e-16
## `Inflation rate`                        -0.29493    0.14791  -1.994   0.0521
## `Female Labor Force Participation Rate`  0.14328    0.05627   2.546   0.0143
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Inflation rate`                        .  
## `Female Labor Force Participation Rate` *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.168 on 46 degrees of freedom
## Multiple R-squared:  0.8789, Adjusted R-squared:  0.871 
## F-statistic: 111.3 on 3 and 46 DF,  p-value: < 2.2e-16
lm_post_scale <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+ `Inflation rate`+`Female Labor Force Participation Rate`, data= women_entp_2)

Let’s try to normalize our continuous variables by performing BoxCox Transformation:

Transform women entrepreneurship index:

powerTransform(women_entp$`Women Entrepreneurship Index`)
## Estimated transformation parameter 
## women_entp$`Women Entrepreneurship Index` 
##                                 0.3797689
a <- coef(powerTransform(women_entp$`Women Entrepreneurship Index`))
women_entp$bcWomenEntrepreneurshipIndex<- bcPower(women_entp$`Women Entrepreneurship Index`,a)

Transform Entrepreneurship Index

powerTransform(women_entp$`Entrepreneurship Index`)
## Estimated transformation parameter 
## women_entp$`Entrepreneurship Index` 
##                           0.0492938
b <- coef(powerTransform(women_entp$`Entrepreneurship Index`))
women_entp$bcEntrepreneurshipIndex<- bcPower(women_entp$`Entrepreneurship Index`,b)

Transform Female Labor Force Participation Rate:

powerTransform(women_entp$`Female Labor Force Participation Rate`)
## Estimated transformation parameter 
## women_entp$`Female Labor Force Participation Rate` 
##                                           2.611958
d <- coef(powerTransform(women_entp$`Female Labor Force Participation Rate`))
bcPower(women_entp$`Female Labor Force Participation Rate`,d)
##  [1] 13903.4282  6859.5037 29926.9569 11560.1678 22088.1552 14497.8914
##  [7] 18393.9997 23865.6407 17629.1153 12031.4123 17179.7724 16288.0752
## [13] 19579.1648 16446.7084 14034.2050 23144.4533 15314.5438 17328.7581
## [19]  9021.5507 29199.9718 23323.4706 22001.5019 25160.7565 25538.5723
## [25] 15453.3452 24507.9192 20560.3846 16446.7084 22612.4979   310.5072
## [31] 18705.5836 22349.3776 38545.4375 24507.9192 15803.7368  7826.1133
## [37] 19498.7300  5015.7711 28180.4896 24693.3639   726.9825  1749.3938
## [43] 17704.7027  2858.7675 23413.2986 14034.2050 20477.4835 20977.9957
## [49] 17478.5385  9071.5617
women_entp$bcFemaleLaborForceParticipationRate <- bcPower(women_entp$`Female Labor Force Participation Rate`,d)

Testing the distribution after transformation:

ggplot(data = women_entp,aes(sample = women_entp$`Women Entrepreneurship Index`))+ stat_qq()+ stat_qq_line()

scatterplotMatrix(women_entp[,c(11:13)])

hist(women_entp$`Inflation rate`)

View(women_entp)
lm1 <- lm(`bcWomenEntrepreneurshipIndex` ~ `bcEntrepreneurshipIndex`+ `Inflation rate`+`bcFemaleLaborForceParticipationRate`, data = women_entp)
summary(lm1)
## 
## Call:
## lm(formula = bcWomenEntrepreneurshipIndex ~ bcEntrepreneurshipIndex + 
##     `Inflation rate` + bcFemaleLaborForceParticipationRate, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.07968 -0.34121 -0.06845  0.28535  1.01660 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         -2.405e+00  8.179e-01  -2.941  0.00511 ** 
## bcEntrepreneurshipIndex              2.594e+00  2.029e-01  12.784  < 2e-16 ***
## `Inflation rate`                    -2.768e-02  1.474e-02  -1.878  0.06667 .  
## bcFemaleLaborForceParticipationRate  1.962e-05  1.002e-05   1.958  0.05627 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.51 on 46 degrees of freedom
## Multiple R-squared:  0.8618, Adjusted R-squared:  0.8528 
## F-statistic:  95.6 on 3 and 46 DF,  p-value: < 2.2e-16
summary(lm)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Inflation rate` + `Female Labor Force Participation Rate`, 
##     data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.1599  -3.4630  -0.5734   2.7374   9.0744 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              5.24174    3.62596   1.446   0.1551
## `Entrepreneurship Index`                 0.74512    0.05268  14.145   <2e-16
## `Inflation rate`                        -0.29493    0.14791  -1.994   0.0521
## `Female Labor Force Participation Rate`  0.14328    0.05627   2.546   0.0143
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Inflation rate`                        .  
## `Female Labor Force Participation Rate` *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.168 on 46 degrees of freedom
## Multiple R-squared:  0.8789, Adjusted R-squared:  0.871 
## F-statistic: 111.3 on 3 and 46 DF,  p-value: < 2.2e-16

Data Visualization

ggplot(women_entp, 
       aes(x=`Women Entrepreneurship Index`, y=`Entrepreneurship Index`, shape=`Level of development`, color=`Level of development`))+ 
  geom_point() + # Adding points (scatterplot)
  geom_smooth(method = "lm") + # Adding regression lines
  ylab("Entrepreneurship Index") + # y-axis label
  xlab("Women Entrepreneurship Index") + # x-axis label
  ggtitle("Index by Level of Development") 
## `geom_smooth()` using formula 'y ~ x'

ggplot(women_entp, 
       aes(x=`Women Entrepreneurship Index`, y=`Entrepreneurship Index`, shape=`European Union Membership`, color=`European Union Membership`))+ 
  geom_point() + # Adding points (scatterplot)
  geom_smooth(method = "lm") + # Adding regression lines
  ylab("Entrepreneurship Index") + # y-axis label
  xlab("Women Entrepreneurship Index") + # x-axis label
  ggtitle("Index by European Union Membership") 
## `geom_smooth()` using formula 'y ~ x'

boxplot(women_entp$`bcFemaleLaborForceParticipationRate` ~ women_entp$`Level of development`,
        main = "Female Labor Force Participation Rate by Development Level",
        xlab = "Female Labor Force Participation Rate",
        ylab = "Level of Development",
        horizontal = TRUE)

boxplot(women_entp$`Women Entrepreneurship Index` ~ women_entp$`European Union Membership`,
        main = "Women Entrepreneurship Index by European Union Membership",
        xlab = "Women Entrepreneurship Index",
        ylab = "European Union Membership",
        horizontal = FALSE)

colors <- c ("Blue","Red")
barplot(women_entp$`Entrepreneurship Index`,
        main = "Entrepreneurship Index Rate by Country",
        ylab = "Entrepreneurship Index Rate", 
        names.arg = women_entp$Country,
        col = colors[women_entp$`Level of development`],
        horiz = FALSE)
legend(x = "topright", legend = c("Developed", "Developing"), col = c("Blue","Red"))
axis(side=2, at=seq(0,100,by=5))

ANOVA & TUKEY TEST

Our potential predictors are : European Union Membership, Level of development, and Inflation Type

The potential Dependent variables are: Women Entrepreneurship Index, Entrepreneurship Index, Inflation rate, and Female Labor Force Participation Rate

EU Membership vs. Women Entrepreneurship Index

eu_aov <- aov(women_entp$`Women Entrepreneurship Index`~ women_entp$`European Union Membership`, data = women_entp) 
anova(eu_aov)
## Analysis of Variance Table
## 
## Response: women_entp$`Women Entrepreneurship Index`
##                                        Df Sum Sq Mean Sq F value    Pr(>F)    
## women_entp$`European Union Membership`  1 4115.1  4115.1  32.742 6.644e-07 ***
## Residuals                              48 6032.7   125.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(eu_aov)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = women_entp$`Women Entrepreneurship Index` ~ women_entp$`European Union Membership`, data = women_entp)
## 
## $`women_entp$`European Union Membership``
##                        diff       lwr       upr p adj
## Not Member-Member -18.51833 -25.02531 -12.01135 7e-07

It seems that there is an association between EU Membership and Women Entrepreneurship Index, could be that there is a correlation between developed nations and its Women Entrepreneurship Index.

Level of Development vs Women Entrepreneurship Index

development_aov <- aov(women_entp$`Women Entrepreneurship Index`~women_entp$`Level of development`)
anova(development_aov)
## Analysis of Variance Table
## 
## Response: women_entp$`Women Entrepreneurship Index`
##                                   Df Sum Sq Mean Sq F value   Pr(>F)    
## women_entp$`Level of development`  1 7624.8  7624.8  145.06 4.09e-16 ***
## Residuals                         48 2523.1    52.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey1 <- TukeyHSD(development_aov)
tukey1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = women_entp$`Women Entrepreneurship Index` ~ women_entp$`Level of development`)
## 
## $`women_entp$`Level of development``
##                           diff       lwr       upr p adj
## Developing-Developed -24.71763 -28.84404 -20.59122     0
plot(tukey1)

Looks like there is a difference in Women Entrepreneurship index means between countries with 2 levels of development: “Developed” & “Developing”, thus an association between Women Entrepreneurship index and Level of Development. We will measure this correlation in further tests.

Level of Development vs Female Labor Force Participation Rate

development_labor_aov <- aov(women_entp$`Female Labor Force Participation Rate`~women_entp$`Level of development`)
anova(development_labor_aov)
## Analysis of Variance Table
## 
## Response: women_entp$`Female Labor Force Participation Rate`
##                                   Df Sum Sq Mean Sq F value   Pr(>F)   
## women_entp$`Level of development`  1 1277.0 1277.04  7.3658 0.009206 **
## Residuals                         48 8321.9  173.37                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey2 <- TukeyHSD(development_labor_aov)
tukey2
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = women_entp$`Female Labor Force Participation Rate` ~ women_entp$`Level of development`)
## 
## $`women_entp$`Level of development``
##                           diff       lwr       upr    p adj
## Developing-Developed -10.11567 -17.60973 -2.621621 0.009206
plot(tukey2)

An Alternative: Performing T-Test

Level of Development is a factor to predict both Female Labor Force Participation Rate and Women Entrepreneurship Index of a country.

Inflation Type vs. Women Entrepreneurship Index

hist(women_entp$`Inflation rate`, col = "yellowgreen",breaks = 20, freq = FALSE, xaxt="n")
axis(side=1, at=seq(-5,30,by=2))

inflation_aov <- aov(women_entp$`Women Entrepreneurship Index`~women_entp$`Inflation Type`)
anova(inflation_aov)
## Analysis of Variance Table
## 
## Response: women_entp$`Women Entrepreneurship Index`
##                             Df Sum Sq Mean Sq F value    Pr(>F)    
## women_entp$`Inflation Type`  3 3861.2 1287.06  9.4175 5.776e-05 ***
## Residuals                   46 6286.7  136.67                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tukey3 <- TukeyHSD(inflation_aov)
tukey3
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = women_entp$`Women Entrepreneurship Index` ~ women_entp$`Inflation Type`)
## 
## $`women_entp$`Inflation Type``
##                                              diff        lwr       upr
## Galloping Inflation-Deflation          -19.761176 -35.614218 -3.908135
## Moderate Inflation-Deflation             4.006192  -6.396859 14.409242
## Walking Inflation-Deflation            -15.352288 -28.197807 -2.506768
## Moderate Inflation-Galloping Inflation  23.767368   8.105105 39.429632
## Walking Inflation-Galloping Inflation    4.408889 -12.971860 21.789638
## Walking Inflation-Moderate Inflation   -19.358480 -31.967800 -6.749159
##                                            p adj
## Galloping Inflation-Deflation          0.0091848
## Moderate Inflation-Deflation           0.7348986
## Walking Inflation-Deflation            0.0133556
## Moderate Inflation-Galloping Inflation 0.0011007
## Walking Inflation-Galloping Inflation  0.9055981
## Walking Inflation-Moderate Inflation   0.0009509
plot(tukey3) 

inflation_aov2 <- aov(women_entp$`Female Labor Force Participation Rate`~women_entp$`Inflation Type`)
anova(inflation_aov2)
## Analysis of Variance Table
## 
## Response: women_entp$`Female Labor Force Participation Rate`
##                             Df Sum Sq Mean Sq F value Pr(>F)
## women_entp$`Inflation Type`  3  934.1  311.36   1.653 0.1903
## Residuals                   46 8664.9  188.37

There is a correlation/association between Inflation Type and Women Entrepreneurship Index. However, correlation doesn’t mean causation, so we’re going to test how strong the Inflation Type-Women Entrepreneurship Index interaction is and its reliability by conducting some regression models below.

Variables Correlation and Linear Regression

cmat <- cor(women_entp[,c(6:8,10)])
corrplot.mixed(cmat)

cor(women_entp[,c(6:8,10)])
##                                       Women Entrepreneurship Index
## Women Entrepreneurship Index                             1.0000000
## Entrepreneurship Index                                   0.9225547
## Inflation rate                                          -0.4531406
## Female Labor Force Participation Rate                    0.4443458
##                                       Entrepreneurship Index Inflation rate
## Women Entrepreneurship Index                       0.9225547     -0.4531406
## Entrepreneurship Index                             1.0000000     -0.3876506
## Inflation rate                                    -0.3876506      1.0000000
## Female Labor Force Participation Rate              0.3478316     -0.1434566
##                                       Female Labor Force Participation Rate
## Women Entrepreneurship Index                                      0.4443458
## Entrepreneurship Index                                            0.3478316
## Inflation rate                                                   -0.1434566
## Female Labor Force Participation Rate                             1.0000000

REGRESSION MODEL:

  1. Using categorical variables (Level of development, EU membership, Inflation type) and the Entrepreneurship Index as well as Female Labor Force Participation Rate as our main predictors. Each categorical predictors will be added seperately to test the variable importance or the statistical significance. The Women Entrepreneur Index will be our target variable.
lm1 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+`Female Labor Force Participation Rate`, data = women_entp)
summary(lm1)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate`, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.7238  -3.4104  -0.8712   2.8059   9.7909 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              2.60455    3.48141   0.748   0.4581
## `Entrepreneurship Index`                 0.78336    0.05059  15.483   <2e-16
## `Female Labor Force Participation Rate`  0.14440    0.05802   2.489   0.0164
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Female Labor Force Participation Rate` *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.33 on 47 degrees of freedom
## Multiple R-squared:  0.8684, Adjusted R-squared:  0.8628 
## F-statistic: 155.1 on 2 and 47 DF,  p-value: < 2.2e-16

Adding the level of development variable:

lm2 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+`Female Labor Force Participation Rate`+ `Level of development`, data = women_entp)
summary(lm2)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate` + `Level of development`, 
##     data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.3672  -2.2971   0.0437   2.4707  10.4389 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             19.46869    5.03596   3.866 0.000346
## `Entrepreneurship Index`                 0.55812    0.06942   8.040 2.58e-10
## `Female Labor Force Participation Rate`  0.11239    0.05055   2.223 0.031161
## `Level of development`Developing        -9.26564    2.22310  -4.168 0.000134
##                                            
## (Intercept)                             ***
## `Entrepreneurship Index`                ***
## `Female Labor Force Participation Rate` *  
## `Level of development`Developing        ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.59 on 46 degrees of freedom
## Multiple R-squared:  0.9045, Adjusted R-squared:  0.8983 
## F-statistic: 145.2 on 3 and 46 DF,  p-value: < 2.2e-16
summary(lm2)$adj.r.squared
## [1] 0.8982792
summary(lm)$adj.r.squared
## [1] 0.8710146

Level of development is significant. We should add this to our final model.

Adding EU membership variable:

lm3 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+`Female Labor Force Participation Rate`+ `European Union Membership`, data = women_entp)
summary(lm3)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate` + `European Union Membership`, 
##     data = women_entp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.216  -2.981  -0.264   2.154  10.605 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             11.14727    3.66882   3.038 0.003913
## `Entrepreneurship Index`                 0.68201    0.05035  13.547  < 2e-16
## `Female Labor Force Participation Rate`  0.14465    0.05024   2.879 0.006031
## `European Union Membership`Not Member   -6.35642    1.55602  -4.085 0.000174
##                                            
## (Intercept)                             ** 
## `Entrepreneurship Index`                ***
## `Female Labor Force Participation Rate` ** 
## `European Union Membership`Not Member   ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.615 on 46 degrees of freedom
## Multiple R-squared:  0.9035, Adjusted R-squared:  0.8972 
## F-statistic: 143.5 on 3 and 46 DF,  p-value: < 2.2e-16

EU membership is significant too. We should add it to the model

Adding Inflation type:

lm4 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+`Female Labor Force Participation Rate`+ `Inflation Type`, data = women_entp)
summary(lm4)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate` + `Inflation Type`, 
##     data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.7482  -3.8418  -0.1011   2.8111  10.0654 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              6.77186    4.08215   1.659   0.1042
## `Entrepreneurship Index`                 0.73536    0.05999  12.258 8.75e-16
## `Female Labor Force Participation Rate`  0.14404    0.05828   2.471   0.0174
## `Inflation Type`Galloping Inflation     -5.76335    2.88115  -2.000   0.0517
## `Inflation Type`Moderate Inflation      -1.74323    1.79543  -0.971   0.3369
## `Inflation Type`Walking Inflation       -3.66927    2.32621  -1.577   0.1219
##                                            
## (Intercept)                                
## `Entrepreneurship Index`                ***
## `Female Labor Force Participation Rate` *  
## `Inflation Type`Galloping Inflation     .  
## `Inflation Type`Moderate Inflation         
## `Inflation Type`Walking Inflation          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.221 on 44 degrees of freedom
## Multiple R-squared:  0.8818, Adjusted R-squared:  0.8684 
## F-statistic: 65.64 on 5 and 44 DF,  p-value: < 2.2e-16

Inflation type is not statistically significant. We should not use this as predictor.

Combining both EU membership and Level of development as predictors in our linear regression model.

lm5 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+`Female Labor Force Participation Rate`+ `European Union Membership`+`Level of development`, data = women_entp)
summary(lm5)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate` + `European Union Membership` + 
##     `Level of development`, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.3529  -2.2931  -0.0482   1.9733  10.6447 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             17.43777    5.12623   3.402  0.00141
## `Entrepreneurship Index`                 0.59229    0.07177   8.253 1.48e-10
## `Female Labor Force Participation Rate`  0.12535    0.05047   2.484  0.01679
## `European Union Membership`Not Member   -3.51329    2.24790  -1.563  0.12508
## `Level of development`Developing        -5.55556    3.22907  -1.720  0.09221
##                                            
## (Intercept)                             ** 
## `Entrepreneurship Index`                ***
## `Female Labor Force Participation Rate` *  
## `European Union Membership`Not Member      
## `Level of development`Developing        .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.519 on 45 degrees of freedom
## Multiple R-squared:  0.9094, Adjusted R-squared:  0.9014 
## F-statistic:   113 on 4 and 45 DF,  p-value: < 2.2e-16
plot(lm5)

When combined, both of these factors are significant.

  1. Interaction Effect Tests
lm6 <- lm(`Women Entrepreneurship Index` ~(`Entrepreneurship Index`+`Female Labor Force Participation Rate`+ `European Union Membership`)^2 , data = women_entp)
summary(lm6)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ (`Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate` + `European Union Membership`)^2, 
##     data = women_entp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7071 -2.5883  0.2194  1.8633  9.9920 
## 
## Coefficients:
##                                                                                 Estimate
## (Intercept)                                                                    50.972348
## `Entrepreneurship Index`                                                        0.003225
## `Female Labor Force Participation Rate`                                        -0.374999
## `European Union Membership`Not Member                                         -26.634909
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`                0.008631
## `Entrepreneurship Index`:`European Union Membership`Not Member                  0.182944
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member   0.171653
##                                                                               Std. Error
## (Intercept)                                                                    13.989126
## `Entrepreneurship Index`                                                        0.266654
## `Female Labor Force Participation Rate`                                         0.264830
## `European Union Membership`Not Member                                           8.371874
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`                0.003683
## `Entrepreneurship Index`:`European Union Membership`Not Member                  0.144850
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member   0.190931
##                                                                               t value
## (Intercept)                                                                     3.644
## `Entrepreneurship Index`                                                        0.012
## `Female Labor Force Participation Rate`                                        -1.416
## `European Union Membership`Not Member                                          -3.181
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`                2.344
## `Entrepreneurship Index`:`European Union Membership`Not Member                  1.263
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member   0.899
##                                                                               Pr(>|t|)
## (Intercept)                                                                   0.000719
## `Entrepreneurship Index`                                                      0.990408
## `Female Labor Force Participation Rate`                                       0.163978
## `European Union Membership`Not Member                                         0.002720
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`              0.023787
## `Entrepreneurship Index`:`European Union Membership`Not Member                0.213400
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member 0.373644
##                                                                                  
## (Intercept)                                                                   ***
## `Entrepreneurship Index`                                                         
## `Female Labor Force Participation Rate`                                          
## `European Union Membership`Not Member                                         ** 
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`              *  
## `Entrepreneurship Index`:`European Union Membership`Not Member                   
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.255 on 43 degrees of freedom
## Multiple R-squared:  0.9233, Adjusted R-squared:  0.9126 
## F-statistic: 86.24 on 6 and 43 DF,  p-value: < 2.2e-16
summary(lm6)$adj.r.squared
## [1] 0.9125688
lm7 <- lm(`Women Entrepreneurship Index` ~ `Entrepreneurship Index`+`Female Labor Force Participation Rate`+ `European Union Membership`+`Level of development`+`Entrepreneurship Index`:`Female Labor Force Participation Rate`+ `Entrepreneurship Index`:`Level of development`, data =women_entp)
summary(lm7)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Entrepreneurship Index` + 
##     `Female Labor Force Participation Rate` + `European Union Membership` + 
##     `Level of development` + `Entrepreneurship Index`:`Female Labor Force Participation Rate` + 
##     `Entrepreneurship Index`:`Level of development`, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.3795  -3.0860  -0.1211   2.0883   9.6437 
## 
## Coefficients:
##                                                                   Estimate
## (Intercept)                                                      33.110133
## `Entrepreneurship Index`                                          0.219467
## `Female Labor Force Participation Rate`                          -0.129003
## `European Union Membership`Not Member                            -4.282898
## `Level of development`Developing                                 -5.380173
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`  0.005944
## `Entrepreneurship Index`:`Level of development`Developing         0.018949
##                                                                  Std. Error
## (Intercept)                                                       14.482872
## `Entrepreneurship Index`                                           0.343521
## `Female Labor Force Participation Rate`                            0.194817
## `European Union Membership`Not Member                              2.305267
## `Level of development`Developing                                   9.016243
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`   0.004728
## `Entrepreneurship Index`:`Level of development`Developing          0.211059
##                                                                  t value
## (Intercept)                                                        2.286
## `Entrepreneurship Index`                                           0.639
## `Female Labor Force Participation Rate`                           -0.662
## `European Union Membership`Not Member                             -1.858
## `Level of development`Developing                                  -0.597
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`   1.257
## `Entrepreneurship Index`:`Level of development`Developing          0.090
##                                                                  Pr(>|t|)  
## (Intercept)                                                        0.0272 *
## `Entrepreneurship Index`                                           0.5263  
## `Female Labor Force Participation Rate`                            0.5114  
## `European Union Membership`Not Member                              0.0700 .
## `Level of development`Developing                                   0.5538  
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`   0.2155  
## `Entrepreneurship Index`:`Level of development`Developing          0.9289  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.511 on 43 degrees of freedom
## Multiple R-squared:  0.9138, Adjusted R-squared:  0.9017 
## F-statistic: 75.95 on 6 and 43 DF,  p-value: < 2.2e-16
summary(lm7)$adj.r.squared
## [1] 0.9017475
summary(lm7)$coefficients
##                                                                      Estimate
## (Intercept)                                                      33.110132975
## `Entrepreneurship Index`                                          0.219467275
## `Female Labor Force Participation Rate`                          -0.129003241
## `European Union Membership`Not Member                            -4.282897938
## `Level of development`Developing                                 -5.380173313
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`  0.005943545
## `Entrepreneurship Index`:`Level of development`Developing         0.018948823
##                                                                    Std. Error
## (Intercept)                                                      14.482872017
## `Entrepreneurship Index`                                          0.343520685
## `Female Labor Force Participation Rate`                           0.194816933
## `European Union Membership`Not Member                             2.305266824
## `Level of development`Developing                                  9.016243208
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`  0.004727734
## `Entrepreneurship Index`:`Level of development`Developing         0.211059454
##                                                                      t value
## (Intercept)                                                       2.28615795
## `Entrepreneurship Index`                                          0.63887645
## `Female Labor Force Participation Rate`                          -0.66217674
## `European Union Membership`Not Member                            -1.85787515
## `Level of development`Developing                                 -0.59672007
## `Entrepreneurship Index`:`Female Labor Force Participation Rate`  1.25716566
## `Entrepreneurship Index`:`Level of development`Developing         0.08977955
##                                                                    Pr(>|t|)
## (Intercept)                                                      0.02723243
## `Entrepreneurship Index`                                         0.52629196
## `Female Labor Force Participation Rate`                          0.51139148
## `European Union Membership`Not Member                            0.07004243
## `Level of development`Developing                                 0.55382324
## `Entrepreneurship Index`:`Female Labor Force Participation Rate` 0.21547935
## `Entrepreneurship Index`:`Level of development`Developing        0.92887929

It seems like lm7 is the fittest model to predict Women Entrepreneurship Index with R-squared = 0.9975. In this model, there is one pair of interacting variables that are Entrpreneurship Index:Level of development Developing. What this means is that if a country entrepreneurship index increase by 1 and it is a developing country, the women entrepreneurship index is predicted to increase by 0.0143

Our Final Model Can Be Represented in Formula as below:

#y = women entrepreneurship index, E= EU membership, L = Level of development, x1 = Entrepreneurship Index, x2= Inflation rate, x3 = Female Labor Force Participation Rate

#y = 3.596 + 0.02617x1 - 0.0007903x2 - 0.0008124x3 - 0.01126E - 0.626L - 0.00003545*x1*x3 - 0.01434*x1*L

CONCLUSION: Our model to predict WEI is good but the result is not very interesting because it’s obvious that entrepreneurship index, naturally, is a factor that is going to impact WEI the most without further analysis.

  1. Predicting FemaleLaborForcePariticipationRate. The process will be the same as when we try to predict Women Entrepreneur Index
lm_lf <- lm(`bcFemaleLaborForceParticipationRate` ~ `bcWomenEntrepreneurshipIndex` + `bcEntrepreneurshipIndex`+`Inflation rate`, data = women_entp) 
summary(lm_lf)
## 
## Call:
## lm(formula = bcFemaleLaborForceParticipationRate ~ bcWomenEntrepreneurshipIndex + 
##     bcEntrepreneurshipIndex + `Inflation rate`, data = women_entp)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -12971  -5785   1488   4839  16068 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -2809.3    12600.5  -0.223   0.8246  
## bcWomenEntrepreneurshipIndex   3923.2     2003.4   1.958   0.0563 .
## bcEntrepreneurshipIndex       -3350.6     6102.1  -0.549   0.5856  
## `Inflation rate`                114.6      215.6   0.532   0.5975  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7213 on 46 degrees of freedom
## Multiple R-squared:  0.2196, Adjusted R-squared:  0.1687 
## F-statistic: 4.314 on 3 and 46 DF,  p-value: 0.009201

2 significant variables are bcwomenentrepreneurshipindex and bcentrepreneurshipindex. However, adj.r-squared is low (adj.r^2 = 0.1779). Since inflation rate is not statisitcally significant. Let’s drop this variable and try to add other factors as our predictors to see if adj.r^2 improve.

Adding level of development to the model

lm_lf1 <- lm(`bcFemaleLaborForceParticipationRate` ~ `bcWomenEntrepreneurshipIndex` + `bcEntrepreneurshipIndex`+`Inflation rate`+ `Level of development`, data = women_entp) 
summary(lm_lf1)
## 
## Call:
## lm(formula = bcFemaleLaborForceParticipationRate ~ bcWomenEntrepreneurshipIndex + 
##     bcEntrepreneurshipIndex + `Inflation rate` + `Level of development`, 
##     data = women_entp)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -13682  -5568   1117   4814  15888 
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                      -10068.63   19582.70  -0.514   0.6097  
## bcWomenEntrepreneurshipIndex       4443.64    2285.21   1.945   0.0581 .
## bcEntrepreneurshipIndex           -2917.81    6217.12  -0.469   0.6411  
## `Inflation rate`                     88.38     223.97   0.395   0.6950  
## `Level of development`Developing   2109.31    4329.67   0.487   0.6285  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7273 on 45 degrees of freedom
## Multiple R-squared:  0.2237, Adjusted R-squared:  0.1547 
## F-statistic: 3.241 on 4 and 45 DF,  p-value: 0.02025

Level of development is not significant, we should drop this variable.

Adding EU membership

lm_lf2 <- lm(`bcFemaleLaborForceParticipationRate` ~ `bcWomenEntrepreneurshipIndex` + `bcEntrepreneurshipIndex`+`Inflation rate`+ `European Union Membership`, data = women_entp) 
summary(lm_lf2)
## 
## Call:
## lm(formula = bcFemaleLaborForceParticipationRate ~ bcWomenEntrepreneurshipIndex + 
##     bcEntrepreneurshipIndex + `Inflation rate` + `European Union Membership`, 
##     data = women_entp)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -13493  -4589   1093   5110  12037 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                           -12859.22   13370.81  -0.962   0.3413  
## bcWomenEntrepreneurshipIndex            5475.23    2116.28   2.587   0.0130 *
## bcEntrepreneurshipIndex                -4866.29    5993.18  -0.812   0.4211  
## `Inflation rate`                          41.23     213.41   0.193   0.8477  
## `European Union Membership`Not Member   5167.95    2739.21   1.887   0.0657 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7020 on 45 degrees of freedom
## Multiple R-squared:  0.2768, Adjusted R-squared:  0.2125 
## F-statistic: 4.306 on 4 and 45 DF,  p-value: 0.004926

EU Membership is not significant either.

Adding Inflation type

lm_lf3 <- lm(`bcFemaleLaborForceParticipationRate` ~ `bcWomenEntrepreneurshipIndex` + `bcEntrepreneurshipIndex`+`Inflation rate`+ `Inflation Type`, data = women_entp) 

summary(lm_lf3)
## 
## Call:
## lm(formula = bcFemaleLaborForceParticipationRate ~ bcWomenEntrepreneurshipIndex + 
##     bcEntrepreneurshipIndex + `Inflation rate` + `Inflation Type`, 
##     data = women_entp)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -13668  -5032   1134   3718  15502 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                          -8359.9    14461.7  -0.578   0.5662  
## bcWomenEntrepreneurshipIndex          3790.4     2033.8   1.864   0.0692 .
## bcEntrepreneurshipIndex              -2134.1     6384.5  -0.334   0.7398  
## `Inflation rate`                      -618.3      511.5  -1.209   0.2333  
## `Inflation Type`Galloping Inflation  15803.4     9790.1   1.614   0.1138  
## `Inflation Type`Moderate Inflation    2918.6     2586.0   1.129   0.2653  
## `Inflation Type`Walking Inflation     4933.6     4583.7   1.076   0.2878  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7203 on 43 degrees of freedom
## Multiple R-squared:  0.2724, Adjusted R-squared:  0.1708 
## F-statistic: 2.683 on 6 and 43 DF,  p-value: 0.02664

Inflation type is not significant either.

After testing, we can conclude that only bcWomenEntrepreneurshipIndex and bcEntrepreneurshipIndex are significant. Let’s proceed to test for interaction effects between these 2 variables.

Testing for interaction between bcWomenEntrepreneurshipIndex and bcEntrepreneurshipIndex to predict femalelaborparticipartionrate:

lm_lf4 <- lm(`bcFemaleLaborForceParticipationRate` ~ (`bcWomenEntrepreneurshipIndex` + `bcEntrepreneurshipIndex`)^2, data = women_entp)
summary(lm_lf4)
## 
## Call:
## lm(formula = bcFemaleLaborForceParticipationRate ~ (bcWomenEntrepreneurshipIndex + 
##     bcEntrepreneurshipIndex)^2, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13268.4  -4519.2   -258.8   4486.3  14054.4 
## 
## Coefficients:
##                                                      Estimate Std. Error
## (Intercept)                                            205723      74599
## bcWomenEntrepreneurshipIndex                           -20384       8764
## bcEntrepreneurshipIndex                                -53594      18864
## bcWomenEntrepreneurshipIndex:bcEntrepreneurshipIndex     5784       2064
##                                                      t value Pr(>|t|)   
## (Intercept)                                            2.758  0.00832 **
## bcWomenEntrepreneurshipIndex                          -2.326  0.02449 * 
## bcEntrepreneurshipIndex                               -2.841  0.00668 **
## bcWomenEntrepreneurshipIndex:bcEntrepreneurshipIndex   2.802  0.00741 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6687 on 46 degrees of freedom
## Multiple R-squared:  0.3293, Adjusted R-squared:  0.2855 
## F-statistic: 7.527 on 3 and 46 DF,  p-value: 0.0003367

According to the model, there is no interaction between these 2 varibles. As a result, we should keep them seperate

lm_lf5 <- lm(`bcFemaleLaborForceParticipationRate` ~ `bcWomenEntrepreneurshipIndex` + `bcEntrepreneurshipIndex`, data = women_entp)
summary(lm_lf5)
## 
## Call:
## lm(formula = bcFemaleLaborForceParticipationRate ~ bcWomenEntrepreneurshipIndex + 
##     bcEntrepreneurshipIndex, data = women_entp)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -13416  -5270   1349   5368  16324 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                    -917.6    11995.1  -0.076   0.9393  
## bcWomenEntrepreneurshipIndex   3650.5     1921.8   1.900   0.0636 .
## bcEntrepreneurshipIndex       -3164.1     6045.3  -0.523   0.6032  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7157 on 47 degrees of freedom
## Multiple R-squared:  0.2148, Adjusted R-squared:  0.1814 
## F-statistic: 6.428 on 2 and 47 DF,  p-value: 0.003406

lm_lf5 is our best fit model to predict FemaleLaborForceParticipationRate. However, this model is not very reliable because only 19.34% of the variance in FemaleLaborForceParticipationRate is explained by lm_lf5.

The formula to predict FemaleLaborForceParticipationRate can be represented as below:

# y = FemaleLAborForceParticipationRate , x1= bcWomenEntrepreneurshipIndex, x2 = bcEntrepreneurshipIndex 
#Model y = -197060 -557851x1 + 402588x2
cmatlf <- cor(women_entp[,c(6:8,10)])
corrplot.mixed(cmatlf)

cor(women_entp[,c(6:8,10)])
##                                       Women Entrepreneurship Index
## Women Entrepreneurship Index                             1.0000000
## Entrepreneurship Index                                   0.9225547
## Inflation rate                                          -0.4531406
## Female Labor Force Participation Rate                    0.4443458
##                                       Entrepreneurship Index Inflation rate
## Women Entrepreneurship Index                       0.9225547     -0.4531406
## Entrepreneurship Index                             1.0000000     -0.3876506
## Inflation rate                                    -0.3876506      1.0000000
## Female Labor Force Participation Rate              0.3478316     -0.1434566
##                                       Female Labor Force Participation Rate
## Women Entrepreneurship Index                                      0.4443458
## Entrepreneurship Index                                            0.3478316
## Inflation rate                                                   -0.1434566
## Female Labor Force Participation Rate                             1.0000000

Cohen’s rules of thumb:

|r| <= 0.1 give small (but should still be paid attention to) correlation, |r| <= 0.3 is medium, |r| >= 0.5 is large and can be observed by a casual observer.

Correlation between FemaleLaborForceParticipation rate and Entrpreneurship Index is 0.37 -> medium correlation

Correlation between FemaleLaborForceParticipation rate and Women Entrpreneurship Index is 0.37 also -> medium correlation

Since the correlation of EI and WEI doesn’t bring us much insights to predict WEI, we need to consider drop this variable.

lm8 <- lm(`Women Entrepreneurship Index` ~ `Inflation rate`+`Female Labor Force Participation Rate`+ `European Union Membership`+`Level of development` + `Inflation Type`  , data =women_entp)
summary(lm8)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ `Inflation rate` + 
##     `Female Labor Force Participation Rate` + `European Union Membership` + 
##     `Level of development` + `Inflation Type`, data = women_entp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.766  -2.624   0.013   4.106  11.198 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              46.71835    4.90100   9.532 4.59e-12
## `Inflation rate`                          0.69155    0.46163   1.498   0.1416
## `Female Labor Force Participation Rate`   0.16740    0.07576   2.209   0.0327
## `European Union Membership`Not Member     0.37962    3.17702   0.119   0.9055
## `Level of development`Developing        -22.88740    3.61199  -6.336 1.30e-07
## `Inflation Type`Galloping Inflation     -14.05189    8.71410  -1.613   0.1143
## `Inflation Type`Moderate Inflation        4.28424    2.37161   1.806   0.0780
## `Inflation Type`Walking Inflation        -0.52205    4.24696  -0.123   0.9028
##                                            
## (Intercept)                             ***
## `Inflation rate`                           
## `Female Labor Force Participation Rate` *  
## `European Union Membership`Not Member      
## `Level of development`Developing        ***
## `Inflation Type`Galloping Inflation        
## `Inflation Type`Moderate Inflation      .  
## `Inflation Type`Walking Inflation          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.596 on 42 degrees of freedom
## Multiple R-squared:  0.8199, Adjusted R-squared:  0.7899 
## F-statistic: 27.32 on 7 and 42 DF,  p-value: 1.071e-13

Only Level of development and female labor force participation rate is significant. Adj R squared is 0.7419 Testing for interaction

lm9 <- lm(`Women Entrepreneurship Index` ~ (`Inflation rate`+`Female Labor Force Participation Rate`+ `European Union Membership`+`Level of development` + `Inflation Type`)^2  , data =women_entp)
summary(lm9)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ (`Inflation rate` + 
##     `Female Labor Force Participation Rate` + `European Union Membership` + 
##     `Level of development` + `Inflation Type`)^2, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.0462  -2.6926  -0.1102   3.0397  14.8683 
## 
## Coefficients: (5 not defined because of singularities)
##                                                                                Estimate
## (Intercept)                                                                    25.06667
## `Inflation rate`                                                                3.89836
## `Female Labor Force Participation Rate`                                         0.54233
## `European Union Membership`Not Member                                           4.10015
## `Level of development`Developing                                               -2.87096
## `Inflation Type`Galloping Inflation                                           -22.89498
## `Inflation Type`Moderate Inflation                                             10.31126
## `Inflation Type`Walking Inflation                                              -8.82570
## `Inflation rate`:`Female Labor Force Participation Rate`                       -0.02818
## `Inflation rate`:`European Union Membership`Not Member                         15.55715
## `Inflation rate`:`Level of development`Developing                             -15.04811
## `Inflation rate`:`Inflation Type`Galloping Inflation                           -2.62891
## `Inflation rate`:`Inflation Type`Moderate Inflation                            -1.13661
## `Inflation rate`:`Inflation Type`Walking Inflation                             -2.09213
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member   0.15342
## `Female Labor Force Participation Rate`:`Level of development`Developing       -0.53165
## `Female Labor Force Participation Rate`:`Inflation Type`Galloping Inflation     0.26192
## `Female Labor Force Participation Rate`:`Inflation Type`Moderate Inflation     -0.12481
## `Female Labor Force Participation Rate`:`Inflation Type`Walking Inflation       0.10389
## `European Union Membership`Not Member:`Level of development`Developing               NA
## `European Union Membership`Not Member:`Inflation Type`Galloping Inflation            NA
## `European Union Membership`Not Member:`Inflation Type`Moderate Inflation      -42.33959
## `European Union Membership`Not Member:`Inflation Type`Walking Inflation              NA
## `Level of development`Developing:`Inflation Type`Galloping Inflation                 NA
## `Level of development`Developing:`Inflation Type`Moderate Inflation            39.41665
## `Level of development`Developing:`Inflation Type`Walking Inflation                   NA
##                                                                               Std. Error
## (Intercept)                                                                     18.13077
## `Inflation rate`                                                                 5.55172
## `Female Labor Force Participation Rate`                                          0.28416
## `European Union Membership`Not Member                                           29.16855
## `Level of development`Developing                                                28.87864
## `Inflation Type`Galloping Inflation                                             77.85363
## `Inflation Type`Moderate Inflation                                              22.17418
## `Inflation Type`Walking Inflation                                               30.51670
## `Inflation rate`:`Female Labor Force Participation Rate`                         0.05917
## `Inflation rate`:`European Union Membership`Not Member                           7.89861
## `Inflation rate`:`Level of development`Developing                                6.86306
## `Inflation rate`:`Inflation Type`Galloping Inflation                             4.45939
## `Inflation rate`:`Inflation Type`Moderate Inflation                              4.82684
## `Inflation rate`:`Inflation Type`Walking Inflation                               4.57220
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member    0.43268
## `Female Labor Force Participation Rate`:`Level of development`Developing         0.42616
## `Female Labor Force Participation Rate`:`Inflation Type`Galloping Inflation      1.28867
## `Female Labor Force Participation Rate`:`Inflation Type`Moderate Inflation       0.34448
## `Female Labor Force Participation Rate`:`Inflation Type`Walking Inflation        0.49328
## `European Union Membership`Not Member:`Level of development`Developing                NA
## `European Union Membership`Not Member:`Inflation Type`Galloping Inflation             NA
## `European Union Membership`Not Member:`Inflation Type`Moderate Inflation        16.20988
## `European Union Membership`Not Member:`Inflation Type`Walking Inflation               NA
## `Level of development`Developing:`Inflation Type`Galloping Inflation                  NA
## `Level of development`Developing:`Inflation Type`Moderate Inflation             17.15781
## `Level of development`Developing:`Inflation Type`Walking Inflation                    NA
##                                                                               t value
## (Intercept)                                                                     1.383
## `Inflation rate`                                                                0.702
## `Female Labor Force Participation Rate`                                         1.909
## `European Union Membership`Not Member                                           0.141
## `Level of development`Developing                                               -0.099
## `Inflation Type`Galloping Inflation                                            -0.294
## `Inflation Type`Moderate Inflation                                              0.465
## `Inflation Type`Walking Inflation                                              -0.289
## `Inflation rate`:`Female Labor Force Participation Rate`                       -0.476
## `Inflation rate`:`European Union Membership`Not Member                          1.970
## `Inflation rate`:`Level of development`Developing                              -2.193
## `Inflation rate`:`Inflation Type`Galloping Inflation                           -0.590
## `Inflation rate`:`Inflation Type`Moderate Inflation                            -0.235
## `Inflation rate`:`Inflation Type`Walking Inflation                             -0.458
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member   0.355
## `Female Labor Force Participation Rate`:`Level of development`Developing       -1.248
## `Female Labor Force Participation Rate`:`Inflation Type`Galloping Inflation     0.203
## `Female Labor Force Participation Rate`:`Inflation Type`Moderate Inflation     -0.362
## `Female Labor Force Participation Rate`:`Inflation Type`Walking Inflation       0.211
## `European Union Membership`Not Member:`Level of development`Developing             NA
## `European Union Membership`Not Member:`Inflation Type`Galloping Inflation          NA
## `European Union Membership`Not Member:`Inflation Type`Moderate Inflation       -2.612
## `European Union Membership`Not Member:`Inflation Type`Walking Inflation            NA
## `Level of development`Developing:`Inflation Type`Galloping Inflation               NA
## `Level of development`Developing:`Inflation Type`Moderate Inflation             2.297
## `Level of development`Developing:`Inflation Type`Walking Inflation                 NA
##                                                                               Pr(>|t|)
## (Intercept)                                                                     0.1774
## `Inflation rate`                                                                0.4882
## `Female Labor Force Participation Rate`                                         0.0663
## `European Union Membership`Not Member                                           0.8892
## `Level of development`Developing                                                0.9215
## `Inflation Type`Galloping Inflation                                             0.7708
## `Inflation Type`Moderate Inflation                                              0.6454
## `Inflation Type`Walking Inflation                                               0.7745
## `Inflation rate`:`Female Labor Force Participation Rate`                        0.6375
## `Inflation rate`:`European Union Membership`Not Member                          0.0585
## `Inflation rate`:`Level of development`Developing                               0.0365
## `Inflation rate`:`Inflation Type`Galloping Inflation                            0.5601
## `Inflation rate`:`Inflation Type`Moderate Inflation                             0.8155
## `Inflation rate`:`Inflation Type`Walking Inflation                              0.6507
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member   0.7255
## `Female Labor Force Participation Rate`:`Level of development`Developing        0.2222
## `Female Labor Force Participation Rate`:`Inflation Type`Galloping Inflation     0.8404
## `Female Labor Force Participation Rate`:`Inflation Type`Moderate Inflation      0.7197
## `Female Labor Force Participation Rate`:`Inflation Type`Walking Inflation       0.8347
## `European Union Membership`Not Member:`Level of development`Developing              NA
## `European Union Membership`Not Member:`Inflation Type`Galloping Inflation           NA
## `European Union Membership`Not Member:`Inflation Type`Moderate Inflation        0.0141
## `European Union Membership`Not Member:`Inflation Type`Walking Inflation             NA
## `Level of development`Developing:`Inflation Type`Galloping Inflation                NA
## `Level of development`Developing:`Inflation Type`Moderate Inflation             0.0290
## `Level of development`Developing:`Inflation Type`Walking Inflation                  NA
##                                                                                
## (Intercept)                                                                    
## `Inflation rate`                                                               
## `Female Labor Force Participation Rate`                                       .
## `European Union Membership`Not Member                                          
## `Level of development`Developing                                               
## `Inflation Type`Galloping Inflation                                            
## `Inflation Type`Moderate Inflation                                             
## `Inflation Type`Walking Inflation                                              
## `Inflation rate`:`Female Labor Force Participation Rate`                       
## `Inflation rate`:`European Union Membership`Not Member                        .
## `Inflation rate`:`Level of development`Developing                             *
## `Inflation rate`:`Inflation Type`Galloping Inflation                           
## `Inflation rate`:`Inflation Type`Moderate Inflation                            
## `Inflation rate`:`Inflation Type`Walking Inflation                             
## `Female Labor Force Participation Rate`:`European Union Membership`Not Member  
## `Female Labor Force Participation Rate`:`Level of development`Developing       
## `Female Labor Force Participation Rate`:`Inflation Type`Galloping Inflation    
## `Female Labor Force Participation Rate`:`Inflation Type`Moderate Inflation     
## `Female Labor Force Participation Rate`:`Inflation Type`Walking Inflation      
## `European Union Membership`Not Member:`Level of development`Developing         
## `European Union Membership`Not Member:`Inflation Type`Galloping Inflation      
## `European Union Membership`Not Member:`Inflation Type`Moderate Inflation      *
## `European Union Membership`Not Member:`Inflation Type`Walking Inflation        
## `Level of development`Developing:`Inflation Type`Galloping Inflation           
## `Level of development`Developing:`Inflation Type`Moderate Inflation           *
## `Level of development`Developing:`Inflation Type`Walking Inflation             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.449 on 29 degrees of freedom
## Multiple R-squared:  0.8811, Adjusted R-squared:  0.7992 
## F-statistic: 10.75 on 20 and 29 DF,  p-value: 1.393e-08

There is no significant interaction

lm10 <- lm(`Women Entrepreneurship Index` ~ `bcFemaleLaborForceParticipationRate`+`Level of development`    , data =women_entp)
summary(lm10)
## 
## Call:
## lm(formula = `Women Entrepreneurship Index` ~ bcFemaleLaborForceParticipationRate + 
##     `Level of development`, data = women_entp)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -19.7012  -4.2344   0.3651   5.5575  14.4798 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          5.259e+01  2.995e+00  17.561  < 2e-16 ***
## bcFemaleLaborForceParticipationRate  3.460e-04  1.323e-04   2.615   0.0119 *  
## `Level of development`Developing    -2.279e+01  2.074e+00 -10.989  1.4e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.846 on 47 degrees of freedom
## Multiple R-squared:  0.783,  Adjusted R-squared:  0.7737 
## F-statistic: 84.77 on 2 and 47 DF,  p-value: 2.564e-16
plot(lm10)

We can conclude that without EI, lm10 is our best fit model with adj. R squared = 0.7519. To make this model more reliable, we need more data about other factors like education rate, sociological factors,

The model can be represented as below:

# y = WEI, x1= FLFPR, x2 = LVD - Developing
# y = 49.46869 + 0.15676*x1 -22.95155*x2