For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion.

1.

\(f(x) = \frac{1}{(1-x)}\)

with generating derivatives,

first derivative: \(f'(x) = \frac{1}{(1-x)^2}\)

second derivative: \(f''(x) = \frac{2}{(1-x)^3}\)

third derivative: \(f'''(x) = \frac{6}{(1-x)^4}\)

fourth derivative: \(f''''(x) = \frac{24}{(1-x)^5}\)

when x = 0, \(f^n(0)=f(0)+f'(0)+f''(0)+f'''(0)+f''''(0)+...\)

then \(f^n(0)=1+1+2+6+24+..\)

if substitute back to Taylor Series, \[f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}0}{n!}x^n\]

\(=1+x+\frac{2x^2}{2!}+\frac{6x^3}{3!}+\frac{24x^4}{4!}+..\)

\(=1+x+x^2+x^3+x^4+...\)

Therefore, the Tylor Series expension is \[f(x)=\sum_{n=0}^{\infty}x^n\]

2.

\(f(x)=e^x\)

since \(f(x)=e^x\), so the derivatives are \(f(x)=f'(x)=f''(x)=f'''(x) = f^n(x)=e^x\)

when x = 0, \(f(0)=f'(0)=f''(0)=f'''(0)=f^n(0)=e^0=1\)

Therefore, the Taylor Series expansion is \[\sum_{n=0}^{\infty}\frac{1}{n!}x^n=\sum_{n=0}^{\infty}\frac{x^n}{n!}\]

3.

\(f(x)=ln(1+x)\)

first derivative:

\(f'(x)=\frac{1}{1+x}=(1+x)^-1\)

second derivative:

\(f''(x)=-1(1+x)^{-2}=\frac{-1}{(1+x)^2}\)

third derivative:

\(f'''(x)=2(1+x)^{-3}=\frac{2}{(1+x)^3}\)

fourth derivative:

\(f''''(x)=-6(1+x)^{-4}=\frac{-6}{(1+x)^4}\)

when x=0, \(f(0)=ln(1+0)=ln(1)=0\)

\(f'(0)=(1+0)^{-1}=1\)

\(f''(0)=-1(1+0)^{-2}=-1\)

\(f'''(0)=2(1+0)^{-3}=2\)

\(f''''(0)=-6(1+0)^{-4}=-6\)

since \(f^{(n)}(0)=-1^{(n+1)(n-1)!}\) when \(n\ge 1\)

Therefore

\(ln(1+x)\)

\(=\sum_{n=0}^{\infty}\frac{f^{(n)}0}{n!}(x)^n\)

\(=0+\sum_{n=1}^{\infty}\frac{(-1)^{n+1}(n-1)!}{n!}x^n\)

the Taylor Series expansion is

\(\sum_{n=1}^{\infty}\frac{(-1)^{n+1}x^n}{n}\)