(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
train_index <- sample(1:nrow(OJ), 800)
train_set <- OJ[train_index, ]
test_set <- OJ[-train_index, ]
(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
tree.oj <- tree(Purchase ~ ., train_set)
summary(tree.oj)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = train_set)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "ListPriceDiff" "SalePriceMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7425 = 587.3 / 791
## Misclassification error rate: 0.1588 = 127 / 800
This model has 9 nodes and about at 16% error rate.
(c) Type in the name of the tree object in order to get a
detailed text output. Pick one of the terminal nodes, and interpret the
information displayed.
tree.oj
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.48285 317 358.20 MM ( 0.25237 0.74763 )
## 4) LoyalCH < 0.280875 173 127.90 MM ( 0.12139 0.87861 )
## 8) LoyalCH < 0.0356415 56 10.03 MM ( 0.01786 0.98214 ) *
## 9) LoyalCH > 0.0356415 117 107.00 MM ( 0.17094 0.82906 ) *
## 5) LoyalCH > 0.280875 144 194.90 MM ( 0.40972 0.59028 )
## 10) PriceDiff < 0.05 62 66.24 MM ( 0.22581 0.77419 ) *
## 11) PriceDiff > 0.05 82 112.90 CH ( 0.54878 0.45122 ) *
## 3) LoyalCH > 0.48285 483 427.10 CH ( 0.83851 0.16149 )
## 6) LoyalCH < 0.753545 228 276.10 CH ( 0.70614 0.29386 )
## 12) PriceDiff < -0.165 32 30.88 MM ( 0.18750 0.81250 ) *
## 13) PriceDiff > -0.165 196 201.00 CH ( 0.79082 0.20918 )
## 26) ListPriceDiff < 0.16 29 39.89 MM ( 0.44828 0.55172 ) *
## 27) ListPriceDiff > 0.16 167 141.00 CH ( 0.85030 0.14970 )
## 54) SalePriceMM < 2.125 91 98.32 CH ( 0.76923 0.23077 ) *
## 55) SalePriceMM > 2.125 76 31.34 CH ( 0.94737 0.05263 ) *
## 7) LoyalCH > 0.753545 255 90.67 CH ( 0.95686 0.04314 ) *
I’ll choose terminal node 10. From the root node, the first split is
based on Loyalty > 0.48, followed by a split for Loyalty >0.28.
The last one is based on PriceDiff < 0.05. 64 observations fell into
this node.
(d) Create a plot of the tree, and interpret the
results
plot(tree.oj)
text(tree.oj, pretty = 0)
The most important variable is LoyaltyCH because most of the splits are
based on that variable. After that, PriceDiff has the most impact in the
tree.
(e) Predict the response on the test data, and produce a
confusion matrix comparing the test labels to the predicted test labels.
What is the test error rate?
pred.oj <- predict(tree.oj, test_set, type = "class")
table(pred.oj, test_set$Purchase)
##
## pred.oj CH MM
## CH 145 29
## MM 23 73
(145+73)/270
## [1] 0.8074074
(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.
cv.oj <- cv.tree(tree.oj, K = 10, FUN = prune.misclass)
cv.oj
## $size
## [1] 9 7 6 4 2 1
##
## $dev
## [1] 155 155 161 161 158 315
##
## $k
## [1] -Inf 0 3 4 10 157
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(cv.oj$size,cv.oj$dev/nrow(train_set),type="b")
(h) Which tree size corresponds to the lowest cross-validated
classification error rate?
9 and 7 have the lowest error rate.
(i) Produce a pruned tree corresponding to the optimal tree size
obtained using cross-validation. If cross-validation does not lead to
selection of a pruned tree, then create a pruned tree with five terminal
nodes.
pruned.oj <- prune.tree(tree.oj, best = 5)
(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?
table(predict(pruned.oj, train_set, type = "class"), train_set$Purchase)
##
## CH MM
## CH 399 52
## MM 86 263
(399+263)/270
## [1] 2.451852
(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?
table(predict(pruned.oj, test_set, type = "class"), test_set$Purchase)
##
## CH MM
## CH 148 24
## MM 20 78
(148+78)/270
## [1] 0.837037
The pruned is higher buy a bit.