Se hará uso de la base de datos la cual consta de de 80 observaciones y 105 variables de mujeres con cancer de mama en la ciudad de Cali, concretando algunos parámetrospara las simulaciones y el MCMC para obtener la convergencia de los parámetros esperados.

options(mc.cores = parallel::detectCores())
datos <- readRDS("data/datos.RDS") 
set.seed(535535)
BURNIN1 = 3000
SAMPLE1 = 6500
NCHAINS1 = 6

BURNIN = 2000 # 2500
SAMPLE = 3000 # 6500 
CHAINS = 4    # 6

MODELO DE REFERENCIA

Se establece despues de las prueba de modelos frecuentistas y sus efectos indirectos, finalmente con la investigacion en la literatura, el modelo bayesiano con sus variables latentes.

model_bayesianoref <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

Exploracion de funcion bsem

Del paquete Blavaan que ayuda a ejecutar modelos bayesianos para ecuaciones de modelos estructurales.

#codigo para funcion sem
fitref <- bsem(
  model = model_bayesianoref,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, 
  inits = "prior", 
  sample = BURNIN1,
  burnin = SAMPLE1,
  n.chains = NCHAINS1)
## Computing posterior predictives...

El resumen del modelo indica diferentes puntos de interes e informacion necesaria

summary(fitref,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 6500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -520.168       0.203
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.536    0.811
##     F_c30             1.436    0.157    1.169    1.780    0.769    0.938
##   sintomas =~                                                           
##     S_br23            1.000                               0.330    0.588
##     S_c30             2.351    0.473    1.670    3.500    0.776    0.930
##      Rhat    Prior       
##                          
##                          
##     1.001    normal(0,15)
##                          
##                          
##     1.002    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.606    0.337   -2.415   -1.094   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud             0.750    0.085    0.576    0.902    0.750    0.763
##     sintomas         -0.774    7.746  -16.995   15.433   -0.255   -0.140
##     funcionalidad     0.251    4.940   -9.985   10.682    0.135    0.074
##   Salud ~                                                               
##     sintomas         -5.678    8.142  -22.767    9.073   -1.873   -1.012
##     funcionalidad    -0.950    5.187  -11.767    8.531   -0.509   -0.275
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.002    normal(0,10)
##     1.002    normal(0,15)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.071    2.201    2.480    2.342    3.544
##    .F_c30             2.438    0.086    2.269    2.609    2.438    2.973
##    .S_br23            1.765    0.063    1.644    1.889    1.765    3.143
##    .S_c30             2.163    0.089    1.988    2.336    2.163    2.592
##    .CV_Gral           0.847    0.380    0.168    1.611    0.847    0.466
##    .Salud             4.338    0.206    3.934    4.751    4.338    2.344
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.001    normal(0,32)
##     1.001    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,32)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.028    0.102    0.214    0.150    0.343
##    .F_c30             0.080    0.027    0.030    0.137    0.080    0.119
##    .S_br23            0.206    0.036    0.147    0.288    0.206    0.655
##    .S_c30             0.095    0.033    0.019    0.160    0.095    0.136
##    .CV_Gral           0.431    0.107    0.172    0.630    0.431    0.130
##    .Salud             1.542    0.325    0.933    2.218    1.542    0.450
##    .funcionalidad     0.006    0.010    0.000    0.038    0.022    0.022
##     sintomas          0.109    0.041    0.042    0.202    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]

Informacion del BRMSEA

blavFitIndices(fitref)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.115        0.964        0.866        0.945

Informacion de R hat

blavInspect(fitref, 'rhat')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                     1.000550                     1.002053 
##       funcionalidad~sintomas                CV_Gral~Salud 
##                     1.001121                     1.001226 
##             CV_Gral~sintomas        CV_Gral~funcionalidad 
##                     1.001847                     1.001802 
##               Salud~sintomas          Salud~funcionalidad 
##                     1.000261                     1.000286 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                     1.000498                     1.000059 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                     1.000195                     1.000819 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                     1.001085                     1.000386 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                     1.002857                     1.000698 
##                     F_br23~1                      F_c30~1 
##                     1.000564                     1.000702 
##                     S_br23~1                      S_c30~1 
##                     1.000449                     1.000627 
##                    CV_Gral~1                      Salud~1 
##                     1.001472                     1.000366

Informacion del neff

blavInspect(fitref, 'neff')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                    11317.401                     4519.726 
##       funcionalidad~sintomas                CV_Gral~Salud 
##                     5565.096                     6191.490 
##             CV_Gral~sintomas        CV_Gral~funcionalidad 
##                     4708.735                     4471.471 
##               Salud~sintomas          Salud~funcionalidad 
##                     5920.930                     5724.018 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                    12320.793                     9969.309 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                    14084.361                     5064.923 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                     5335.657                     9197.620 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                     2623.058                     8383.939 
##                     F_br23~1                      F_c30~1 
##                     7505.849                     7292.504 
##                     S_br23~1                      S_c30~1 
##                    10216.014                     6894.895 
##                    CV_Gral~1                      Salud~1 
##                     6281.104                     9249.827

Grafico del modelo sem bayesiano

semPaths(
  fitref,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

graficos de mcmc

plot(fitref, par = 1:12,  facet_args = list(ncol = 4))

continuacion de graficos mcmc

plot(fitref, par = 13:22, facet_args = list(ncol = 4))

Grafico de intervalos

plot(fitref, par = 1:12,  plot.type = "intervals")

Gráfico de coordenas paralelas

plot(fitref, plot.type = "parcoord")

Modelos con variables moderadoras

Modelo 1.0 variable interaccion edad

model_bayesiano1.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 1.0

fitedad1.0 <- bsem(
  model = model_bayesiano1.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 1.0

summary(fitedad1.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -526.797       0.035
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.537    0.810
##     F_c30             1.439    0.159    1.166    1.796    0.772    0.938
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.590
##     S_c30             2.347    0.521    1.657    3.551    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.601    0.366   -2.436   -1.087   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud             0.739    0.092    0.553    0.904    0.739    0.754
##     sintomas         -1.460    7.801  -17.741   14.706   -0.484   -0.267
##     funcionalidad    -0.149    5.002  -10.593   10.073   -0.080   -0.044
##     Edad             -0.005    0.007   -0.018    0.008   -0.005   -0.033
##   Salud ~                                                               
##     sintomas         -5.619    8.222  -22.588    9.265   -1.862   -1.009
##     funcionalidad    -0.934    5.298  -12.027    8.762   -0.501   -0.271
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.002    normal(0,10)
##     1.002    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.071    2.204    2.483    2.342    3.537
##    .F_c30             2.436    0.087    2.263    2.605    2.436    2.960
##    .S_br23            1.765    0.063    1.641    1.890    1.765    3.139
##    .S_c30             2.165    0.089    1.991    2.338    2.165    2.590
##    .CV_Gral           1.157    0.585    0.031    2.333    1.157    0.639
##    .Salud             4.334    0.205    3.933    4.730    4.334    2.349
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.151    0.028    0.103    0.215    0.151    0.343
##    .F_c30             0.081    0.027    0.031    0.140    0.081    0.119
##    .S_br23            0.206    0.036    0.147    0.288    0.206    0.652
##    .S_c30             0.094    0.033    0.018    0.160    0.094    0.134
##    .CV_Gral           0.425    0.116    0.124    0.638    0.425    0.130
##    .Salud             1.531    0.323    0.910    2.208    1.531    0.450
##    .funcionalidad     0.006    0.010    0.000    0.037    0.022    0.022
##     sintomas          0.110    0.041    0.043    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
blavFitIndices(fitedad1.0, baseline.model = fitref)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.129        0.936        0.840        0.887

Comparacion con factor de bayes modelos Ref Vs 1.0

blavCompare(fitref, fitedad1.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  915.623 
## 
## WAIC difference & SE: 
##    -0.942    1.061 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  915.941 
## 
## LOO difference & SE: 
##    -0.959    1.086 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    6.629

Gana modelo ref

Modelo 2.0 Edad + Estadio del tumor

model_bayesiano2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad
  # residual correlations
'

sem modelo 2.0

fit2.0 <- bsem(
  model = model_bayesiano2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 2.0

summary(fit2.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -530.400       0.026
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.539    0.812
##     F_c30             1.437    0.156    1.168    1.775    0.775    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.588
##     S_c30             2.361    0.559    1.664    3.608    0.781    0.931
##      Rhat    Prior       
##                          
##                          
##     1.001    normal(0,15)
##                          
##                          
##     1.002    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.612    0.384   -2.492   -1.095   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud             0.742    0.088    0.569    0.909    0.742    0.748
##     sintomas         -1.696    7.918  -17.939   14.876   -0.561   -0.306
##     funcionalidad    -0.254    5.065  -10.617   10.372   -0.137   -0.074
##     Edad             -0.005    0.007   -0.018    0.008   -0.005   -0.033
##     Estado_del_tmr   -0.159    0.168   -0.492    0.165   -0.159   -0.041
##   Salud ~                                                               
##     sintomas         -5.644    8.142  -22.865    9.238   -1.866   -1.009
##     funcionalidad    -0.933    5.178  -11.848    8.540   -0.503   -0.272
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.340    0.071    2.201    2.480    2.340    3.524
##    .F_c30             2.435    0.087    2.266    2.604    2.435    2.952
##    .S_br23            1.767    0.063    1.643    1.890    1.767    3.142
##    .S_c30             2.167    0.089    1.994    2.341    2.167    2.583
##    .CV_Gral           1.356    0.622    0.149    2.624    1.356    0.739
##    .Salud             4.330    0.204    3.929    4.727    4.330    2.340
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.341
##    .F_c30             0.080    0.027    0.030    0.139    0.080    0.118
##    .S_br23            0.207    0.036    0.146    0.287    0.207    0.654
##    .S_c30             0.094    0.032    0.020    0.156    0.094    0.133
##    .CV_Gral           0.423    0.118    0.109    0.633    0.423    0.126
##    .Salud             1.543    0.314    0.975    2.221    1.543    0.451
##    .funcionalidad     0.006    0.010    0.000    0.037    0.021    0.021
##     sintomas          0.109    0.042    0.041    0.204    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD2.0

blavCompare(fitref, fit2.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  916.837 
## 
## WAIC difference & SE: 
##    -1.550    1.649 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  917.113 
## 
## LOO difference & SE: 
##    -1.545    1.645 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   10.232

3.0 Edad + Estadio del tumor + Comorbilidad

model_bayesiano3.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas + Comorbilidad
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad
  # residual correlations
'

sem modelo 3.0

fit3.0 <- bsem(
  model = model_bayesiano3.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 3.0

summary(fit3.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -572.734       0.036
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.540    0.813
##     F_c30             1.408    0.150    1.148    1.736    0.760    0.930
##   sintomas =~                                                           
##     S_br23            1.000                               0.340    0.602
##     S_c30             2.268    0.425    1.644    3.324    0.772    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.574    0.312   -2.331   -1.102   -0.992   -0.992
##     Comorbilidad      0.026    0.091   -0.126    0.180    0.047    0.022
##   CV_Gral ~                                                             
##     Salud             0.674    0.122    0.391    0.860    0.674    0.683
##     sintomas         -0.804    7.428  -15.978   12.320   -0.274   -0.150
##     funcionalidad     0.502    4.828   -9.198    9.341    0.271    0.149
##     Edad             -0.001    0.007   -0.015    0.014   -0.001   -0.007
##     Estado_del_tmr   -0.174    0.169   -0.502    0.161   -0.174   -0.045
##   Salud ~                                                               
##     sintomas         -2.955   11.571  -24.634   13.897   -1.005   -0.545
##     funcionalidad     0.799    7.479  -13.124   11.965    0.431    0.234
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.006    normal(0,10)
##                          
##     1.002    normal(0,10)
##     1.004    normal(0,10)
##     1.004    normal(0,15)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.007  normal(-10,10)
##     1.007    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.300    0.168    1.998    2.606    2.300    3.461
##    .F_c30             2.376    0.230    1.974    2.780    2.376    2.906
##    .S_br23            1.765    0.063    1.641    1.888    1.765    3.123
##    .S_c30             2.164    0.090    1.986    2.342    2.164    2.606
##    .CV_Gral           0.989    0.707   -0.396    2.381    0.989    0.544
##    .Salud             3.432    0.593    2.210    4.489    3.432    1.861
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.005    normal(0,32)
##     1.005    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.101    0.216    0.150    0.340
##    .F_c30             0.090    0.027    0.042    0.150    0.090    0.135
##    .S_br23            0.204    0.035    0.145    0.282    0.204    0.638
##    .S_c30             0.094    0.033    0.026    0.159    0.094    0.136
##    .CV_Gral           0.411    0.107    0.159    0.612    0.411    0.124
##    .Salud             1.344    0.342    0.607    2.008    1.344    0.395
##    .funcionalidad     0.004    0.007    0.000    0.022    0.015    0.015
##     sintomas          0.116    0.042    0.048    0.211    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD3.0

blavCompare(fitref, fit3.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  914.414 
## 
## WAIC difference & SE: 
##    -0.338    2.867 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  914.782 
## 
## LOO difference & SE: 
##    -0.379    2.885 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   52.566

Modelo 4.0 Edad + Estadio del tumor + Comorbilidad + compaenero permanente

model_bayesiano4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas + Comorbilidad
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor + Con_companero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad
  # residual correlations
'

Sem modelo 4.0

fit4.0 <- bsem(
  model = model_bayesiano4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 4.0

summary(fit4.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -580.723       0.063
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.540    0.813
##     F_c30             1.405    0.151    1.143    1.743    0.759    0.930
##   sintomas =~                                                           
##     S_br23            1.000                               0.340    0.601
##     S_c30             2.268    0.420    1.641    3.266    0.771    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.578    0.308   -2.295   -1.096   -0.992   -0.992
##     Comorbilidad      0.020    0.092   -0.127    0.178    0.037    0.018
##   CV_Gral ~                                                             
##     Salud             0.668    0.129    0.342    0.854    0.668    0.675
##     sintomas         -1.213    7.729  -16.511   12.790   -0.412   -0.226
##     funcionalidad     0.278    4.998   -9.326    9.832    0.150    0.082
##     Edad             -0.001    0.007   -0.016    0.013   -0.001   -0.007
##     Estado_del_tmr   -0.172    0.172   -0.507    0.164   -0.172   -0.045
##     Cn_cmpnr_prmnn   -0.043    0.164   -0.368    0.274   -0.043   -0.012
##   Salud ~                                                               
##     sintomas         -3.513   11.638  -24.517   14.396   -1.194   -0.648
##     funcionalidad     0.448    7.522  -13.145   12.290    0.242    0.131
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##     1.021    normal(0,10)
##                          
##     1.004    normal(0,10)
##     1.015    normal(0,10)
##     1.015    normal(0,15)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.021  normal(-10,10)
##     1.020    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.309    0.170    1.998    2.610    2.309    3.475
##    .F_c30             2.389    0.231    1.966    2.793    2.389    2.926
##    .S_br23            1.766    0.064    1.641    1.892    1.766    3.124
##    .S_c30             2.165    0.091    1.988    2.342    2.165    2.608
##    .CV_Gral           1.056    0.768   -0.421    2.616    1.056    0.579
##    .Salud             3.433    0.598    2.181    4.486    3.433    1.863
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.018    normal(0,32)
##     1.018    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.002    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.100    0.215    0.150    0.339
##    .F_c30             0.090    0.027    0.041    0.150    0.090    0.136
##    .S_br23            0.204    0.036    0.145    0.284    0.204    0.639
##    .S_c30             0.095    0.033    0.026    0.162    0.095    0.138
##    .CV_Gral           0.412    0.115    0.126    0.625    0.412    0.124
##    .Salud             1.339    0.347    0.594    2.026    1.339    0.394
##    .funcionalidad     0.004    0.007    0.000    0.022    0.015    0.015
##     sintomas          0.115    0.042    0.049    0.210    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD3.0

blavCompare(fitref, fit4.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  916.894 
## 
## WAIC difference & SE: 
##    -1.578    2.893 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  917.471 
## 
## LOO difference & SE: 
##    -1.724    2.906 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   60.555

MODELO 5.0 Edad + Estadio del tumor + Comorbilidad + compaenero permanente + regimen de salud

model_bayesiano5.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas + Comorbilidad
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor + Con_companero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad + regimensalud
  # residual correlations
'

sem modelo 5.0

fit5.0 <- bsem(
  model = model_bayesiano5.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 5.0

summary(fit5.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -576.999       0.050
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.540    0.813
##     F_c30             1.411    0.151    1.145    1.744    0.763    0.932
##   sintomas =~                                                           
##     S_br23            1.000                               0.339    0.599
##     S_c30             2.281    0.447    1.645    3.376    0.773    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.582    0.328   -2.366   -1.097   -0.992   -0.992
##     Comorbilidad      0.017    0.090   -0.127    0.175    0.031    0.015
##   CV_Gral ~                                                             
##     Salud             0.688    0.121    0.413    0.881    0.688    0.696
##     sintomas         -1.506    7.635  -17.098   12.376   -0.510   -0.278
##     funcionalidad     0.021    4.892   -9.719    9.250    0.011    0.006
##     Edad             -0.001    0.007   -0.016    0.013   -0.001   -0.009
##     Estado_del_tmr   -0.174    0.169   -0.513    0.157   -0.174   -0.045
##     Cn_cmpnr_prmnn   -0.039    0.167   -0.366    0.290   -0.039   -0.011
##   Salud ~                                                               
##     sintomas         -4.221   11.603  -25.236   13.902   -1.431   -0.771
##     funcionalidad     0.007    7.505  -13.816   11.883    0.004    0.002
##     regimensalud      0.233    0.308   -0.359    0.841    0.233    0.060
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.019    normal(0,10)
##                          
##     1.002    normal(0,10)
##     1.019    normal(0,10)
##     1.018    normal(0,15)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.019  normal(-10,10)
##     1.019    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.316    0.165    2.009    2.604    2.316    3.485
##    .F_c30             2.398    0.226    1.991    2.781    2.398    2.930
##    .S_br23            1.765    0.063    1.640    1.891    1.765    3.121
##    .S_c30             2.163    0.090    1.987    2.337    2.163    2.599
##    .CV_Gral           1.035    0.738   -0.355    2.523    1.035    0.565
##    .Salud             3.103    0.747    1.599    4.501    3.103    1.673
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.016    normal(0,32)
##     1.017    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.002    normal(0,10)
##     1.001    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.214    0.150    0.339
##    .F_c30             0.088    0.027    0.038    0.147    0.088    0.131
##    .S_br23            0.205    0.036    0.146    0.286    0.205    0.641
##    .S_c30             0.095    0.032    0.028    0.160    0.095    0.138
##    .CV_Gral           0.423    0.113    0.147    0.631    0.423    0.126
##    .Salud             1.369    0.353    0.612    2.069    1.369    0.398
##    .funcionalidad     0.004    0.007    0.000    0.024    0.015    0.015
##     sintomas          0.115    0.042    0.045    0.208    1.000    1.000
##      Rhat    Prior       
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD5.0

blavCompare(fitref, fit5.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  918.254 
## 
## WAIC difference & SE: 
##    -2.258    2.900 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  918.868 
## 
## LOO difference & SE: 
##    -2.422    2.895 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   56.831

MODELO 6.0 Edad + Estadio del tumor + Comorbilidad + compaenero permanente + regimen de salud + nivel educativo

model_bayesiano6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas + Comorbilidad
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor + Con_companero_permanente + niveleducativo 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad + regimensalud
  # residual correlations
'

sem modelo 6.0

fit6.0 <- bsem(
  model = model_bayesiano6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

resumen de modelo 6.0

summary(fit6.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2000 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                      -1109.908       0.031
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.385    0.626
##     F_c30            -3.554    9.346  -28.045    1.737   -1.367   -0.978
##   sintomas =~                                                           
##     S_br23            1.000                               0.332    0.590
##     S_c30             2.379    0.538    1.663    3.703    0.789    0.939
##      Rhat    Prior       
##                          
##                          
##     2.732    normal(0,15)
##                          
##                          
##     1.054    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.145    0.802   -2.272    0.245   -0.987   -0.987
##     Comorbilidad      0.028    0.079   -0.115    0.174    0.072    0.034
##   CV_Gral ~                                                             
##     Salud             0.707    0.107    0.459    0.880    0.707    0.760
##     sintomas         -0.107    6.252  -13.881   11.997   -0.035   -0.029
##     funcionalidad     0.398    7.494  -18.073   14.185    0.153    0.126
##     Edad             -0.002    0.008   -0.017    0.014   -0.002   -0.016
##     Estado_del_tmr   -0.166    0.173   -0.510    0.176   -0.166   -0.065
##     Cn_cmpnr_prmnn   -0.045    0.167   -0.374    0.282   -0.045   -0.018
##     niveleducativo    0.049    0.189   -0.321    0.419    0.049    0.019
##   Salud ~                                                               
##     sintomas         -1.808    9.576  -22.419   13.778   -0.600   -0.459
##     funcionalidad    -0.264    9.023  -20.016   13.157   -0.101   -0.078
##     regimensalud      0.254    0.308   -0.349    0.869    0.254    0.094
##      Rhat    Prior       
##                          
##     2.982    normal(0,10)
##     1.037    normal(0,10)
##                          
##     1.041    normal(0,10)
##     1.008    normal(0,10)
##     1.017    normal(0,15)
##     1.021    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.007  normal(-10,10)
##     1.120    normal(0,10)
##     1.003    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.296    0.151    2.009    2.578    2.296    3.740
##    .F_c30             2.339    0.222    1.947    2.761    2.339    1.673
##    .S_br23            1.765    0.063    1.641    1.887    1.765    3.137
##    .S_c30             2.163    0.090    1.982    2.338    2.163    2.573
##    .CV_Gral           0.977    0.818   -0.645    2.585    0.977    0.803
##    .Salud             3.220    0.788    1.577    4.672    3.220    2.465
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.028    normal(0,32)
##     1.004    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.010    normal(0,10)
##     1.091    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.229    0.142    0.106    0.564    0.229    0.608
##    .F_c30             0.085    0.034    0.006    0.153    0.085    0.043
##    .S_br23            0.206    0.037    0.146    0.289    0.206    0.652
##    .S_c30             0.084    0.038    0.004    0.156    0.084    0.119
##    .CV_Gral           0.446    0.107    0.206    0.654    0.446    0.301
##    .Salud             1.441    0.361    0.724    2.178    1.441    0.845
##    .funcionalidad     0.004    0.007    0.000    0.023    0.024    0.024
##     sintomas          0.110    0.043    0.040    0.207    1.000    1.000
##      Rhat    Prior       
##     3.278 gamma(1,.5)[sd]
##     1.023 gamma(1,.5)[sd]
##     1.008 gamma(1,.5)[sd]
##     1.096 gamma(1,.5)[sd]
##     1.023 gamma(1,.5)[sd]
##     1.075 gamma(1,.5)[sd]
##     1.050 gamma(1,.5)[sd]
##     1.025 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD6.0

blavCompare(fitref, fit6.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  956.03 
## 
## WAIC difference & SE: 
##   -21.146    3.529 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  955.969 
## 
## LOO difference & SE: 
##   -20.973    3.545 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  589.739

ODELO 7.0 Edad + Estadio del tumor + Comorbilidad + compaenero permanente + regimen de salud + nivel educativo + Estrato

model_bayesiano7.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas + Comorbilidad + Estrato 
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor + Con_companero_permanente + niveleducativo 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad + regimensalud
  # residual correlations
'

sem modelo 7.0

fit7.0 <- bsem(
  model = model_bayesiano7.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 7.0

summary(fit7.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -560.710       0.032
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.545    0.814
##     F_c30             1.416    0.153    1.151    1.752    0.772    0.937
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.590
##     S_c30             2.374    0.491    1.681    3.580    0.785    0.938
##      Rhat    Prior       
##                          
##                          
##     1.001    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.621    0.351   -2.467   -1.104   -0.983   -0.983
##     Comorbilidad      0.051    0.091   -0.121    0.203    0.093    0.044
##     Estrato           0.071    0.060   -0.024    0.205    0.130    0.064
##   CV_Gral ~                                                             
##     Salud             0.718    0.107    0.505    0.880    0.718    0.721
##     sintomas         -0.930    4.963  -12.676    8.679   -0.308   -0.163
##     funcionalidad     0.325    3.137   -6.865    6.450    0.177    0.094
##     Edad             -0.002    0.008   -0.017    0.013   -0.002   -0.015
##     Estado_del_tmr   -0.156    0.175   -0.498    0.191   -0.156   -0.039
##     Cn_cmpnr_prmnn   -0.034    0.172   -0.374    0.307   -0.034   -0.009
##     niveleducativo    0.061    0.198   -0.331    0.455    0.061    0.015
##   Salud ~                                                               
##     sintomas         -1.260    7.883  -19.344   11.527   -0.417   -0.220
##     funcionalidad     1.907    4.943   -9.295   10.097    1.039    0.548
##     regimensalud      0.248    0.320   -0.376    0.887    0.248    0.063
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##     1.007    normal(0,10)
##     1.002    normal(0,10)
##                          
##     1.003    normal(0,10)
##     1.009    normal(0,10)
##     1.008    normal(0,15)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.007  normal(-10,10)
##     1.007    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.155    0.199    1.785    2.539    2.155    3.217
##    .F_c30             2.173    0.274    1.675    2.692    2.173    2.637
##    .S_br23            1.766    0.061    1.645    1.888    1.766    3.152
##    .S_c30             2.165    0.089    1.991    2.341    2.165    2.588
##    .CV_Gral           0.976    0.821   -0.619    2.577    0.976    0.517
##    .Salud             3.030    0.887    1.176    4.615    3.030    1.598
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.006    normal(0,32)
##     1.007    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.152    0.030    0.102    0.218    0.152    0.338
##    .F_c30             0.083    0.027    0.033    0.140    0.083    0.122
##    .S_br23            0.204    0.035    0.145    0.283    0.204    0.652
##    .S_c30             0.084    0.036    0.007    0.153    0.084    0.120
##    .CV_Gral           0.456    0.109    0.222    0.660    0.456    0.128
##    .Salud             1.473    0.330    0.842    2.144    1.473    0.410
##    .funcionalidad     0.008    0.011    0.000    0.042    0.028    0.028
##     sintomas          0.109    0.041    0.042    0.202    1.000    1.000
##      Rhat    Prior       
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD7.0

blavCompare(fitref, fit7.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  922.518 
## 
## WAIC difference & SE: 
##    -4.390    2.986 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  923.234 
## 
## LOO difference & SE: 
##    -4.605    3.006 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   40.542

MODELO 8.0 (saturado) Edad + Estadio del tumor + Comorbilidad + compaenero permanente + regimen de salud + nivel educativo + Estrato + Situacion laboral

model_bayesiano8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30
  # regressions
    funcionalidad ~ sintomas + Comorbilidad + Estrato + Situacion_laboral 
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Estado_del_tumor + Con_companero_permanente + niveleducativo 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad + regimensalud
  # residual correlations
'

sem modelo 8.0

fit8.0 <- bsem(
  model = model_bayesiano8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 8.0

summary(fit8.0,standardized = TRUE)
## blavaan (0.4-1) results of 3000 samples after 2000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -558.725       0.027
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.548    0.815
##     F_c30             1.404    0.147    1.149    1.723    0.769    0.937
##   sintomas =~                                                           
##     S_br23            1.000                               0.330    0.590
##     S_c30             2.368    0.476    1.691    3.517    0.782    0.938
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.627    0.345   -2.455   -1.123   -0.980   -0.980
##     Comorbilidad      0.059    0.091   -0.122    0.211    0.107    0.051
##     Estrato           0.076    0.062   -0.026    0.210    0.139    0.069
##     Situacion_lbrl   -0.005    0.056   -0.121    0.108   -0.009   -0.004
##   CV_Gral ~                                                             
##     Salud             0.729    0.092    0.545    0.886    0.729    0.731
##     sintomas         -0.541    4.257  -10.129    7.670   -0.178   -0.094
##     funcionalidad     0.526    2.611   -5.233    5.683    0.288    0.152
##     Edad             -0.003    0.008   -0.017    0.012   -0.003   -0.017
##     Estado_del_tmr   -0.165    0.177   -0.515    0.189   -0.165   -0.041
##     Cn_cmpnr_prmnn   -0.031    0.167   -0.355    0.298   -0.031   -0.008
##     niveleducativo    0.046    0.198   -0.337    0.436    0.046    0.012
##   Salud ~                                                               
##     sintomas         -1.022    6.707  -17.138    9.878   -0.338   -0.178
##     funcionalidad     2.024    4.153   -8.030    8.964    1.109    0.585
##     regimensalud      0.251    0.318   -0.373    0.883    0.251    0.064
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.006    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.004    normal(0,10)
##     1.003    normal(0,15)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.006  normal(-10,10)
##     1.006    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.144    0.209    1.739    2.544    2.144    3.188
##    .F_c30             2.158    0.289    1.602    2.705    2.158    2.629
##    .S_br23            1.765    0.063    1.643    1.887    1.765    3.153
##    .S_c30             2.164    0.090    1.989    2.342    2.164    2.595
##    .CV_Gral           1.085    0.832   -0.529    2.698    1.085    0.573
##    .Salud             3.113    0.931    1.067    4.695    3.113    1.641
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.005    normal(0,32)
##     1.005    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.002    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.152    0.030    0.102    0.218    0.152    0.336
##    .F_c30             0.082    0.028    0.027    0.141    0.082    0.122
##    .S_br23            0.204    0.035    0.147    0.282    0.204    0.652
##    .S_c30             0.084    0.035    0.009    0.154    0.084    0.120
##    .CV_Gral           0.462    0.098    0.282    0.662    0.462    0.129
##    .Salud             1.502    0.337    0.891    2.183    1.502    0.417
##    .funcionalidad     0.010    0.013    0.000    0.046    0.032    0.032
##     sintomas          0.109    0.040    0.043    0.201    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

Comparacion de modelo ref vs mod 8.0

blavCompare(fitref, fit8.0)
## 
## WAIC estimates: 
##  object1:  913.738 
##  object2:  924.023 
## 
## WAIC difference & SE: 
##    -5.142    2.854 
## 
## LOO estimates: 
##  object1:  914.023 
##  object2:  924.886 
## 
## LOO difference & SE: 
##    -5.431    2.868 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   38.557

Comparacion de todos los modelos vs modelo de referencia

comparison <- bayesfactor_models(fitedad1.0,fit2.0,fit3.0,fit4.0,fit5.0,fit6.0,fit7.0,fit8.0,  denominator = fitref)
comparison
## Bayes Factors for Model Comparison
## 
##     Model             BF
## [1] fitedad1.0     0.001
## [2] fit2.0      3.60e-05
## [3] fit3.0      1.48e-23
## [4] fit4.0      5.03e-27
## [5] fit5.0      2.08e-25
## [6] fit6.0     7.58e-257
## [7] fit7.0      2.47e-18
## [8] fit8.0      1.80e-17
## 
## * Against Denominator: [9] fitref
## *   Bayes Factor Type: marginal likelihoods (Laplace approximation)
as.matrix(comparison)
## # Bayes Factors for Model Comparison 
## 
##         Numerator
## Denominator
## 
##     |       [1] |       [2] |       [3] |       [4] |       [5] |       [6] |       [7] |       [8] |       [9]
## --------------------------------------------------------------------------------------------------------------------------
## [1] fitedad1.0 |         1 |     0.027 |  1.12e-20 |  3.80e-24 |  1.58e-22 | 5.73e-254 |  1.87e-15 |  1.36e-14 |    756.62
## [2] fit2.0     |     36.72 |         1 |  4.12e-19 |  1.40e-22 |  5.79e-21 | 2.10e-252 |  6.87e-14 |  5.00e-13 |  2.78e+04
## [3] fit3.0     |  8.92e+19 |  2.43e+18 |         1 |  3.39e-04 |     0.014 | 5.11e-234 |  1.67e+05 |  1.21e+06 |  6.75e+22
## [4] fit4.0     |  2.63e+23 |  7.16e+21 |  2.95e+03 |         1 |     41.43 | 1.51e-230 |  4.91e+08 |  3.58e+09 |  1.99e+26
## [5] fit5.0     |  6.35e+21 |  1.73e+20 |     71.13 |     0.024 |         1 | 3.64e-232 |  1.19e+07 |  8.64e+07 |  4.80e+24
## [6] fit6.0     | 1.74e+253 | 4.75e+251 | 1.96e+233 | 6.64e+229 | 2.75e+231 |         1 | 3.26e+238 | 2.37e+239 | 1.32e+256
## [7] fit7.0     |  5.35e+14 |  1.46e+13 |  6.00e-06 |  2.03e-09 |  8.43e-08 | 3.07e-239 |         1 |      7.28 |  4.05e+17
## [8] fit8.0     |  7.35e+13 |  2.00e+12 |  8.24e-07 |  2.80e-10 |  1.16e-08 | 4.21e-240 |     0.137 |         1 |  5.56e+16
## [9] fitref     |     0.001 |  3.60e-05 |  1.48e-23 |  5.03e-27 |  2.08e-25 | 7.58e-257 |  2.47e-18 |  1.80e-17 |         1