Categorical and Simphson’s paradox
#########################################
######################################### Chi-square test and Fisher's exact test
######################################### by Caesarean section and maternal shoe size
#install.packages("ISwR")
library(ISwR)
caesar.shoe
## <4 4 4.5 5 5.5 6+
## Yes 5 7 6 7 8 10
## No 17 28 36 41 46 140
caesar.shoe.yes <- caesar.shoe["Yes",]
caesar.shoe.total <- margin.table(caesar.shoe,2)
caesar.shoe.yes
## <4 4 4.5 5 5.5 6+
## 5 7 6 7 8 10
caesar.shoe.total
## <4 4 4.5 5 5.5 6+
## 22 35 42 48 54 150
# Chi-square test
chisq.test(caesar.shoe, correct=F)
## Warning in chisq.test(caesar.shoe, correct = F): Chi-squared approximation
## may be incorrect
##
## Pearson's Chi-squared test
##
## data: caesar.shoe
## X-squared = 9.2874, df = 5, p-value = 0.09814
# Fisher's exact test
fisher.test(caesar.shoe.yes,caesar.shoe.total)
##
## Fisher's Exact Test for Count Data
##
## data: caesar.shoe.yes and caesar.shoe.total
## p-value = 1
## alternative hypothesis: two.sided
#Note: 자유도가 작은 경우엔 Fisher's exact test를 한다.
#########################################
######################################### Simpson's paradox
######################################### by Student Admissions at UC Berkeley
#install.packages("graphics")
library(graphics)
## 자료를 학과에 상관없이 분석한 결과
apply(UCBAdmissions, c(1, 2), sum)
## Gender
## Admit Male Female
## Admitted 1198 557
## Rejected 1493 1278
mosaicplot(apply(UCBAdmissions, c(1, 2), sum), main = "Student admissions at UC Berkeley")
## 자료를 학과를 기준으로 분석한 결과
opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))
for(i in 1:6){
mosaicplot(UCBAdmissions[,,i],
xlab = "Admit", ylab = "Sex",
main = paste("Department", LETTERS[i]))
}
mtext(expression(bold("Student admissions at UC Berkeley")),outer = TRUE, cex = 1.5)