To create the statistical summary of a data
To study normality of the data
For statistical summary of a given dataset, the rbase
package will be used. To calculate skewness and kurtosis of dataset, the
ACSWR is used.
Note: The functions
skewnessandkurtosisfrom thee1071package are more generic functions. Another resouse ismomentspackage.
Step 1: Load the dataset
Step 2: Load necessary packages
Step 3: Calculate statistical summaries
Step 4: Calculate the skewness and
kurtosis of the numerical data
Step 5: Report the results
#loading package
library(ACSWR)
#loading data
data(yb)
#view structure of data
str(yb)
## 'data.frame': 8 obs. of 2 variables:
## $ Preparation_1: int 31 20 18 17 9 8 10 7
## $ Preparation_2: int 18 17 14 11 10 7 5 6
# creating statistical summary
summary(yb)
## Preparation_1 Preparation_2
## Min. : 7.00 Min. : 5.00
## 1st Qu.: 8.75 1st Qu.: 6.75
## Median :13.50 Median :10.50
## Mean :15.00 Mean :11.00
## 3rd Qu.:18.50 3rd Qu.:14.75
## Max. :31.00 Max. :18.00
range(yb$Preparation_1); range(yb$Preparation_2) # list out ranges of data
## [1] 7 31
## [1] 5 18
#skewness and kurtosis of preparation_1
skewcoeff(yb$Preparation_1); kurtcoeff(yb$Preparation_1)
## [1] 0.8548652
## [1] 2.727591
#skewness and kurtosis of preparation_2
skewcoeff(yb$Preparation_2); kurtcoeff(yb$Preparation_2)
## [1] 0.2256965
## [1] 1.6106
A=c(1,4,8,12)
summary(A)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.25 6.00 6.25 9.00 12.00
B=c(4,8,12,16)
summary(B)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4 7 10 10 13 16
skewcoeff(A)
## [1] 0.138147
kurtcoeff(A)
## [1] 1.597633
skewcoeff(B)
## [1] 0
kurtcoeff(B)
## [1] 1.64
A distribution is normal then mean=median=mode and the
skewness is 0 and kurtosis is 2. In this experiment statistical
summaries of two variables are created. From the skewness and kurtosis
measures, both the variables are positively skewed and
preparation_1 is lepto-kurtic and
preparation_2 is meso-kurtic. Based on the statistical
summary and skewness and kurtosis measures, both the variables are
different from a normal distribution.