13M1. Revisit the Reed frog survival data, data(reedfrogs), and add the predation and size treatment variables to the varying intercepts model. Consider models with either main effect alone, both main effects, as well as a model including both and their interaction.

library(rstan)
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.21.3, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## Do not specify '-march=native' in 'LOCAL_CPPFLAGS' or a Makevars file
library(rethinking)
## Loading required package: cmdstanr
## This is cmdstanr version 0.4.0
## - Online documentation and vignettes at mc-stan.org/cmdstanr
## - CmdStan path set to: C:/Users/Dani Grant/Documents/.cmdstanr/cmdstan-2.29.2
## - Use set_cmdstan_path() to change the path
## Loading required package: parallel
## rethinking (Version 2.21)
## 
## Attaching package: 'rethinking'
## The following object is masked from 'package:rstan':
## 
##     stan
## The following object is masked from 'package:stats':
## 
##     rstudent
data(reedfrogs)
d <- reedfrogs

d_list <- list(
  survive = d$surv, #number surviving
  density = d$density, #initial tadpole density
  predation = ifelse(d$pred == "no", 1, 2), #factor: predators present or absent
  size = ifelse(d$size == "small", 1, 2), #factor: big or small tadpoles
  tank = 1:nrow(d)
)
#model for predation
m.pred <- ulam(
  alist(
    survive ~ dbinom(density, p),
    logit(p) <- alpha[tank] + beta*predation,
    alpha[tank] ~ dnorm(a_bar, sigma_a),
    a_bar ~ dnorm(0, 1.5),
    sigma_a ~ dexp(1), 
    beta ~ dnorm(0, .5)
    ), data = d_list, chains = 4, iter = 4000, log_lik = TRUE)
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c7bdb4149.stan', line 2, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c7bdb4149.stan', line 3, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c7bdb4149.stan', line 4, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c7bdb4149.stan', line 5, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c7bdb4149.stan', line 6, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup)
## Chain 1 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:
## Chain 1 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c7bdb4149.stan', line 19, column 4 to column 38)
## Chain 1 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
## Chain 1 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.
## Chain 1
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 1 finished in 2.3 seconds.
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 2.2 seconds.
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 finished in 2.3 seconds.
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 2.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 2.3 seconds.
## Total execution time: 10.4 seconds.
#model for size
m.size <- ulam(
  alist(
    survive ~ dbinom(density, p),
    logit(p) <- alpha[tank] + beta*size,
    alpha[tank] ~ dnorm(a_bar, sigma_a),
    a_bar ~ dnorm(0, 1.5),
    sigma_a ~ dexp(1),
    beta ~ dnorm(0, .5)
    ), data = d_list, chains = 4, iter = 4000, log_lik = TRUE)
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c17c37679.stan', line 2, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c17c37679.stan', line 3, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c17c37679.stan', line 4, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c17c37679.stan', line 5, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c17c37679.stan', line 6, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 1 finished in 2.3 seconds.
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 2.2 seconds.
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 finished in 2.3 seconds.
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 2.2 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 2.3 seconds.
## Total execution time: 10.1 seconds.
#model for predation & size
m.cont <- ulam(
  alist(
    survive ~ dbinom(density, p),
    logit(p) <- alpha[tank] + beta1*predation + beta2*size,
    alpha[tank] ~ dnorm(a_bar, sigma_a),
    a_bar ~ dnorm(0, 1.5),
    sigma_a ~ dexp(1),
    beta1 ~ dnorm(0, .5),
    beta2 ~ dnorm(0, .5)
    ), data = d_list, chains = 4, iter = 4000, log_lik = TRUE)
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c26ac2454.stan', line 2, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c26ac2454.stan', line 3, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c26ac2454.stan', line 4, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c26ac2454.stan', line 5, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c26ac2454.stan', line 6, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 1 finished in 3.3 seconds.
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 3.3 seconds.
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 finished in 3.5 seconds.
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 3.4 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 3.4 seconds.
## Total execution time: 14.4 seconds.
#model for interaction
m.int <- ulam(
  alist(
    survive ~ dbinom(density, p),
    logit(p) <- alpha[tank] + beta1*predation + beta2*size + beta3*predation*size,
    alpha[tank] ~ dnorm(a_bar, sigma_a),
    a_bar ~ dnorm(0, 1.5),
    sigma_a ~ dexp(1),
    beta1 ~ dnorm(0, .5),
    beta2 ~ dnorm(0, .5),
    beta3 ~ dnorm(0, .5)
    ), data = d_list, chains = 4, iter = 4000, log_lik = TRUE)
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 2, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 3, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 4, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 5, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 6, column 4: Declaration
##     of arrays by placing brackets after a variable name is deprecated and
##     will be removed in Stan 2.32.0. Instead use the array keyword before the
##     type. This can be changed automatically using the auto-format flag to
##     stanc
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 1 finished in 4.8 seconds.
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup)
## Chain 2 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:
## Chain 2 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 23, column 4 to column 38)
## Chain 2 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
## Chain 2 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.
## Chain 2
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 5.0 seconds.
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup)
## Chain 3 Informational Message: The current Metropolis proposal is about to be rejected because of the following issue:
## Chain 3 Exception: normal_lpdf: Scale parameter is 0, but must be positive! (in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpWcWQhl/model-e6c36c731f5.stan', line 23, column 4 to column 38)
## Chain 3 If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
## Chain 3 but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.
## Chain 3
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 finished in 4.9 seconds.
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Warmup) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Warmup) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Warmup) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Warmup) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Warmup) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Warmup) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Warmup) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Warmup) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Warmup) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Warmup) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Warmup) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Warmup) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 2001 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 5.0 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 4.9 seconds.
## Total execution time: 20.8 seconds.

Instead of focusing on inferences about these two predictor variables, focus on the inferred variation across tanks. Explain why it changes as it does across models.

precis(m.pred, depth = 2)
##                 mean        sd       5.5%     94.5%     n_eff    Rhat4
## alpha[1]   3.8614444 0.7877880  2.6142868  5.137268 1176.3632 1.002638
## alpha[2]   4.4192820 0.8473987  3.1140385  5.817503 1739.6769 1.001626
## alpha[3]   3.0219706 0.7439505  1.8457776  4.209076  859.2952 1.002816
## alpha[4]   4.4123856 0.8669714  3.0917088  5.840798 1700.8527 1.001912
## alpha[5]   3.8648885 0.7796313  2.6674294  5.106660 1260.0488 1.002798
## alpha[6]   3.8662894 0.7955597  2.6293893  5.162456 1212.8584 1.001995
## alpha[7]   4.4045468 0.8514005  3.1022639  5.793951 1642.3484 1.001795
## alpha[8]   3.8681018 0.7854253  2.6055647  5.141178 1134.7298 1.001727
## alpha[9]   3.1372044 0.8153234  1.7977141  4.397956  521.4561 1.005476
## alpha[10]  4.7097058 0.7940307  3.4652684  5.983163  788.3030 1.003888
## alpha[11]  4.0189326 0.7675327  2.7885062  5.204260  580.4882 1.005191
## alpha[12]  3.7095295 0.7727444  2.4429765  4.905111  571.9615 1.005572
## alpha[13]  4.0172344 0.7839900  2.7719834  5.245011  616.9760 1.005158
## alpha[14]  3.4269844 0.7882217  2.1411701  4.643138  517.6671 1.006385
## alpha[15]  4.6965864 0.7933193  3.4540286  5.970312  768.5663 1.003854
## alpha[16]  4.6977009 0.7931827  3.4519262  5.964923  787.4008 1.003846
## alpha[17]  4.3875593 0.6985702  3.3067869  5.526095 1500.2243 1.002196
## alpha[18]  4.0384914 0.6692958  2.9967840  5.128770 1001.6254 1.003474
## alpha[19]  3.7383003 0.6329981  2.7518445  4.781536  856.2592 1.003668
## alpha[20]  4.8166807 0.7565965  3.6752052  6.080957 1805.4195 1.003696
## alpha[21]  4.0325592 0.6628160  3.0170921  5.118752 1031.1507 1.003316
## alpha[22]  4.0394726 0.6672503  3.0115339  5.115173 1090.3173 1.002672
## alpha[23]  4.0333196 0.6705748  3.0064962  5.109583  933.1504 1.003246
## alpha[24]  3.4829071 0.6127597  2.5147417  4.468733  758.1243 1.004517
## alpha[25]  2.4095496 0.7470839  1.1725335  3.567725  426.8587 1.007087
## alpha[26]  3.4219923 0.7132247  2.2614524  4.510342  418.1725 1.008169
## alpha[27]  2.0662424 0.7801108  0.7965408  3.288081  429.4623 1.007030
## alpha[28]  2.8674562 0.7169119  1.6946824  3.965116  408.3586 1.007435
## alpha[29]  3.4246204 0.7091818  2.2819216  4.539141  414.0886 1.008339
## alpha[30]  4.5046620 0.6994811  3.3793605  5.612874  483.4896 1.006646
## alpha[31]  2.7230494 0.7259116  1.5347550  3.847142  414.4234 1.006923
## alpha[32]  3.0036245 0.7126807  1.8553129  4.107994  410.6536 1.006605
## alpha[33]  4.5992093 0.6814038  3.5624993  5.735456 1308.8388 1.001543
## alpha[34]  4.2816995 0.6371800  3.3010748  5.332022 1094.6030 1.002344
## alpha[35]  4.2826257 0.6364354  3.3055797  5.326725 1058.0897 1.002892
## alpha[36]  3.7583516 0.5809995  2.8403756  4.712901  784.0299 1.003124
## alpha[37]  3.7639227 0.5768381  2.8409414  4.686879  769.8942 1.004223
## alpha[38]  4.9954787 0.7532019  3.8382726  6.243362 1971.8722 1.002437
## alpha[39]  4.2826245 0.6511242  3.2899578  5.349342 1167.7707 1.002303
## alpha[40]  3.9949221 0.5977325  3.0536329  4.961593  866.1936 1.003638
## alpha[41]  1.7202536 0.7693261  0.4585765  2.913043  406.2187 1.007072
## alpha[42]  2.7621609 0.6974765  1.6323889  3.866659  387.2709 1.008999
## alpha[43]  2.8672438 0.6935427  1.7343814  3.940114  391.8765 1.007588
## alpha[44]  2.9731969 0.6848161  1.8763588  4.021553  376.2419 1.007677
## alpha[45]  3.8082552 0.6734465  2.7232373  4.867294  390.5952 1.007873
## alpha[46]  2.7561993 0.6999378  1.6409380  3.839145  384.9466 1.008563
## alpha[47]  5.0202578 0.6833927  3.9214089  6.102240  491.1593 1.006462
## alpha[48]  3.2844055 0.6830467  2.1738236  4.374022  382.1225 1.008868
## a_bar      3.7200870 0.4880815  2.9579665  4.492757  330.3164 1.009709
## sigma_a    0.9518595 0.1782999  0.6997280  1.258817  847.7148 1.003925
## beta      -1.6437978 0.3053246 -2.1246922 -1.160826  307.9413 1.010417
precis(m.size, depth = 2)
##                  mean        sd        5.5%      94.5%     n_eff    Rhat4
## alpha[1]   2.35200616 1.1120394  0.67179210  4.1812103  884.0872 1.003531
## alpha[2]   3.27780922 1.2721460  1.36023970  5.4008824 1287.0538 1.001723
## alpha[3]   1.21255926 0.9588194 -0.28561999  2.7843946  647.6443 1.005239
## alpha[4]   3.27719032 1.2680912  1.38985625  5.4129597 1235.0458 1.001849
## alpha[5]   2.26978637 0.9666576  0.83318295  3.8831133 1799.8419 1.001321
## alpha[6]   2.27796255 0.9510336  0.83108705  3.8466787 1795.1956 1.001296
## alpha[7]   3.22710273 1.1960738  1.50714965  5.2717809 2147.9860 1.001401
## alpha[8]   2.28210371 0.9781528  0.82574183  3.9165743 1645.4202 1.001525
## alpha[9]   0.03979528 0.9308054 -1.44875190  1.5319397  614.8201 1.006737
## alpha[10]  2.34787053 1.0958805  0.66306920  4.1540416  870.1693 1.004734
## alpha[11]  1.22464022 0.9573764 -0.27832838  2.7865864  687.1256 1.004998
## alpha[12]  0.80284625 0.9302018 -0.68026117  2.3055298  628.4446 1.004958
## alpha[13]  1.13239704 0.7774992 -0.07506026  2.3977004 1296.5172 1.002420
## alpha[14]  0.32167335 0.7275710 -0.84823184  1.4763259 1197.7715 1.002101
## alpha[15]  2.27857638 0.9612185  0.85241537  3.9061576 1743.2807 1.001401
## alpha[16]  2.27941958 0.9701164  0.83837765  3.9165648 1628.3850 1.000851
## alpha[17]  3.13574664 1.0376193  1.54698210  4.8312333  817.4266 1.004110
## alpha[18]  2.62058395 0.9600378  1.10774910  4.1958302  673.9254 1.004567
## alpha[19]  2.23015076 0.9010498  0.78457510  3.6897953  585.5621 1.006361
## alpha[20]  3.87428230 1.1670422  2.10667790  5.8241593 1073.2863 1.003786
## alpha[21]  2.51843431 0.7790900  1.32386460  3.8016303 1379.9281 1.001627
## alpha[22]  2.51964843 0.7673882  1.34677955  3.8029838 1209.4140 1.002880
## alpha[23]  2.52679453 0.7686595  1.38768900  3.8415582 1337.1108 1.002492
## alpha[24]  1.82756669 0.6492575  0.82453535  2.8826822  970.0484 1.003473
## alpha[25] -0.77400117 0.8342830 -2.13100585  0.5598437  499.3063 1.006860
## alpha[26]  0.38697804 0.8189778 -0.94733164  1.7425236  482.6942 1.007098
## alpha[27] -1.20303790 0.8671779 -2.60110565  0.1720714  527.1182 1.006174
## alpha[28] -0.24418287 0.8119211 -1.53215730  1.0567976  483.9669 1.006601
## alpha[29]  0.27706361 0.5437581 -0.60107566  1.1374048  743.8013 1.003952
## alpha[30]  1.56581521 0.6298649  0.60330980  2.6193771  898.7367 1.005058
## alpha[31] -0.51879236 0.5549134 -1.40935825  0.3511165  774.3110 1.003789
## alpha[32] -0.19227308 0.5487483 -1.06688280  0.6906228  734.7594 1.004349
## alpha[33]  3.42449068 1.0209610  1.86780525  5.0783137  786.7297 1.004829
## alpha[34]  2.93398274 0.9433993  1.48896880  4.5040951  640.7874 1.006211
## alpha[35]  2.92295331 0.9333313  1.45811020  4.4391346  651.1884 1.005821
## alpha[36]  2.28285688 0.8629598  0.92372716  3.7018886  540.4975 1.005697
## alpha[37]  2.17856054 0.6279462  1.18150365  3.2032598  934.7629 1.002456
## alpha[38]  4.02847705 1.0708183  2.46889925  5.8301088 2219.1386 1.001885
## alpha[39]  2.84375672 0.7597061  1.69468080  4.0942598 1319.4402 1.002119
## alpha[40]  2.47331822 0.6931354  1.41293470  3.6029556 1046.7297 1.002791
## alpha[41] -1.58582243 0.8595965 -3.01498180 -0.2530945  514.6133 1.007210
## alpha[42] -0.34266647 0.7944442 -1.59500355  0.9439870  444.5724 1.007378
## alpha[43] -0.22413161 0.7911386 -1.51716585  1.0480772  440.0113 1.008250
## alpha[44] -0.10818407 0.7868420 -1.34672280  1.1719705  439.9004 1.007587
## alpha[45]  0.69614313 0.5057148 -0.10774510  1.5052986  664.8347 1.004532
## alpha[46] -0.45347935 0.5072334 -1.26914055  0.3577754  660.9345 1.004475
## alpha[47]  2.17714938 0.6328360  1.19570745  3.2024493  859.5124 1.003083
## alpha[48]  0.12133971 0.5021313 -0.68272059  0.9297588  654.6093 1.005197
## a_bar      1.51731187 0.5835884  0.58753892  2.4667370  433.6792 1.008356
## sigma_a    1.62151229 0.2182334  1.30620505  1.9957296 4515.9180 1.000454
## beta      -0.11393194 0.3586493 -0.69518817  0.4605004  369.6313 1.009785
precis(m.cont, depth = 2)
##                 mean        sd       5.5%      94.5%    n_eff    Rhat4
## alpha[1]   4.0906247 0.9197688  2.6102697  5.5466515 615.2932 1.008312
## alpha[2]   4.6157620 0.9248516  3.1542863  6.0952670 766.7069 1.008525
## alpha[3]   3.2523898 0.9033756  1.7861857  4.7009157 477.1650 1.011197
## alpha[4]   4.6054816 0.9496783  3.0925179  6.1495925 820.4214 1.008055
## alpha[5]   4.0194506 0.8616286  2.5948171  5.3703195 732.6129 1.007294
## alpha[6]   4.0402064 0.8490588  2.6944503  5.4215630 693.6187 1.009453
## alpha[7]   4.5817064 0.9074357  3.1819370  6.0695328 922.9692 1.006712
## alpha[8]   4.0232854 0.8658585  2.6525675  5.4009893 671.6540 1.008293
## alpha[9]   3.3755495 0.9514786  1.8044067  4.8381054 355.7788 1.014700
## alpha[10]  4.9116664 0.9002913  3.4477542  6.3315562 443.9795 1.014196
## alpha[11]  4.2444479 0.9173577  2.7477139  5.6844759 388.8351 1.015157
## alpha[12]  3.9386851 0.9167302  2.4403689  5.3833217 366.4775 1.013973
## alpha[13]  4.1628574 0.8429586  2.7832581  5.4790473 438.4062 1.013376
## alpha[14]  3.5664659 0.8590492  2.1620473  4.9050715 388.0587 1.013955
## alpha[15]  4.8464105 0.8475907  3.4913954  6.2186427 602.2156 1.011169
## alpha[16]  4.8536964 0.8426199  3.5018874  6.1845001 579.3837 1.010840
## alpha[17]  4.6153251 0.8415473  3.2826256  5.9968777 593.5862 1.010128
## alpha[18]  4.2663288 0.8108745  2.9616210  5.5578458 497.2987 1.011523
## alpha[19]  3.9664914 0.7960146  2.6844179  5.2357832 451.9110 1.013485
## alpha[20]  5.0275850 0.8744062  3.6677062  6.4323112 714.2517 1.009999
## alpha[21]  4.1902353 0.7414003  3.0370159  5.3950604 591.1584 1.011107
## alpha[22]  4.1884735 0.7414346  3.0211575  5.3963446 593.8999 1.010732
## alpha[23]  4.1924220 0.7428804  3.0093817  5.3724185 598.4107 1.008689
## alpha[24]  3.6251266 0.6897434  2.5111190  4.7260363 502.6334 1.009739
## alpha[25]  2.6489218 0.9328392  1.1236269  4.0940218 313.9107 1.016985
## alpha[26]  3.6627314 0.8818903  2.2016386  5.0234436 305.1006 1.016685
## alpha[27]  2.3141422 0.9569383  0.7382753  3.7818376 313.6659 1.016943
## alpha[28]  3.1083575 0.9016141  1.6176641  4.4932952 295.2886 1.019066
## alpha[29]  3.5606233 0.7694941  2.2927478  4.7422819 316.9749 1.017857
## alpha[30]  4.6236874 0.7602422  3.3839929  5.8158943 365.4609 1.013567
## alpha[31]  2.8571970 0.7971687  1.5297479  4.0849994 341.2623 1.014929
## alpha[32]  3.1445445 0.7927822  1.8534578  4.3659967 316.7180 1.016996
## alpha[33]  4.8317397 0.8273963  3.5239552  6.1707285 609.9445 1.009922
## alpha[34]  4.5105623 0.7925973  3.2320431  5.7708512 507.5985 1.012396
## alpha[35]  4.5058667 0.7892215  3.2637669  5.7861883 500.4449 1.011334
## alpha[36]  4.0018913 0.7605207  2.7736102  5.2025628 402.6280 1.014990
## alpha[37]  3.9114107 0.6573181  2.8654585  4.9812992 493.7918 1.010989
## alpha[38]  5.1469436 0.7951759  3.8855362  6.4169719 984.1037 1.007434
## alpha[39]  4.4311430 0.7060047  3.3279534  5.5722808 578.8054 1.008670
## alpha[40]  4.1491375 0.6771740  3.0760118  5.2271164 537.6282 1.010625
## alpha[41]  1.9701035 0.9563947  0.3896573  3.4523127 301.8810 1.018002
## alpha[42]  3.0021231 0.8821087  1.5742785  4.3470826 284.5445 1.019201
## alpha[43]  3.1137527 0.8803245  1.6639020  4.4704166 283.4359 1.020064
## alpha[44]  3.2177156 0.8726557  1.7713947  4.5684339 294.2595 1.019163
## alpha[45]  3.9413110 0.7406427  2.7078218  5.0811939 319.4139 1.017332
## alpha[46]  2.8898618 0.7666928  1.6129868  4.0879506 322.3617 1.016213
## alpha[47]  5.1401487 0.7472879  3.9065395  6.3215475 370.1947 1.014779
## alpha[48]  3.4141820 0.7518950  2.1956697  4.5704027 308.7008 1.017801
## a_bar      3.9106286 0.6298914  2.8857332  4.8828388 257.6151 1.022170
## sigma_a    0.9461209 0.1812201  0.6813081  1.2554322 782.6301 1.003105
## beta1     -1.6350700 0.3070999 -2.0995311 -1.1165786 377.5889 1.011993
## beta2     -0.1361554 0.2666650 -0.5678786  0.2857243 561.5505 1.011213
precis(m.int, depth = 2)
##                 mean        sd       5.5%      94.5%     n_eff    Rhat4
## alpha[1]   3.2882213 0.8302016  1.9680444  4.6357161  438.4838 1.013940
## alpha[2]   3.7046233 0.8804660  2.3031967  5.1284713  463.4400 1.011040
## alpha[3]   2.6032405 0.8281743  1.2715354  3.8984925  411.1151 1.013818
## alpha[4]   3.6896047 0.8734053  2.2943598  5.1044059  456.8042 1.010354
## alpha[5]   3.2761025 0.8067009  1.9975730  4.5712580  463.4999 1.013373
## alpha[6]   3.2650298 0.7992805  1.9954867  4.5677086  457.9681 1.012859
## alpha[7]   3.6702971 0.8390378  2.3476284  5.0407458  523.2340 1.009117
## alpha[8]   3.2570251 0.7951581  1.9993619  4.5244570  544.5930 1.010594
## alpha[9]   3.1982803 0.7900583  1.9265227  4.4449958  339.3615 1.017130
## alpha[10]  4.4360595 0.8186387  3.1472505  5.7677134  382.7846 1.014581
## alpha[11]  3.9225799 0.7860689  2.6879740  5.1688701  354.2710 1.015016
## alpha[12]  3.6829447 0.7885312  2.4216684  4.9481756  319.3850 1.016694
## alpha[13]  3.4007973 0.7623992  2.1796830  4.6102893  370.0489 1.015076
## alpha[14]  2.9172030 0.7647229  1.6562528  4.0994332  351.1364 1.016686
## alpha[15]  3.9513298 0.7853267  2.7085489  5.2029974  423.5267 1.012144
## alpha[16]  3.9474622 0.7852345  2.6938707  5.1917983  374.0278 1.014925
## alpha[17]  3.6878858 0.7954759  2.4540698  4.9605565  398.3011 1.015765
## alpha[18]  3.3992925 0.7721189  2.1608378  4.6483560  369.5034 1.015595
## alpha[19]  3.1423373 0.7531334  1.9225923  4.3468312  353.5132 1.016482
## alpha[20]  4.0118912 0.8338009  2.7078409  5.3401114  393.3021 1.015981
## alpha[21]  3.3670032 0.7115368  2.2495846  4.5192482  444.0299 1.011787
## alpha[22]  3.3664269 0.7091958  2.2422643  4.5133808  401.4803 1.014244
## alpha[23]  3.3718484 0.7045209  2.2483177  4.4943455  477.5016 1.012747
## alpha[24]  2.8923778 0.6677432  1.8438971  3.9610947  443.7928 1.013232
## alpha[25]  2.6380741 0.7558213  1.3999524  3.7919447  295.0847 1.018325
## alpha[26]  3.5644097 0.7220115  2.3927502  4.6950853  282.6939 1.019229
## alpha[27]  2.3351172 0.7659644  1.0863417  3.5232038  304.0763 1.020077
## alpha[28]  3.0524331 0.7378577  1.8365741  4.2003620  281.1940 1.020055
## alpha[29]  2.8347994 0.6898514  1.7216156  3.8977983  294.2773 1.022065
## alpha[30]  3.8142001 0.7031716  2.6957896  4.9389702  298.0502 1.018359
## alpha[31]  2.2064846 0.7006448  1.0628601  3.2817685  300.5300 1.018560
## alpha[32]  2.4577257 0.6939495  1.3516994  3.5125228  287.5509 1.021638
## alpha[33]  3.8482272 0.7775901  2.6453481  5.0865560  391.6402 1.015551
## alpha[34]  3.5855183 0.7563039  2.3926468  4.7803980  342.0505 1.017142
## alpha[35]  3.5927057 0.7663892  2.3876423  4.8075849  405.3562 1.016825
## alpha[36]  3.1519128 0.7271678  1.9839373  4.3091387  322.3834 1.019472
## alpha[37]  3.1047321 0.6472586  2.0497041  4.1219506  396.8352 1.014165
## alpha[38]  4.1397874 0.7989306  2.9262104  5.4679133  575.7207 1.009628
## alpha[39]  3.5626595 0.6988341  2.4566842  4.6893282  422.7992 1.014383
## alpha[40]  3.3205599 0.6623979  2.2545315  4.3641381  395.5568 1.013235
## alpha[41]  2.0225485 0.7720652  0.7400945  3.2028879  289.6117 1.021464
## alpha[42]  2.9839181 0.7204370  1.8134685  4.1041676  269.1476 1.021163
## alpha[43]  3.0827947 0.7247199  1.9130751  4.2014392  264.5290 1.020626
## alpha[44]  3.1846426 0.7159481  2.0333212  4.3127648  267.5172 1.021601
## alpha[45]  3.1787992 0.6621656  2.1052339  4.1950162  271.8292 1.021097
## alpha[46]  2.2058758 0.6790100  1.1129619  3.2717579  281.4314 1.021142
## alpha[47]  4.2695748 0.6928798  3.1521923  5.3654765  292.1844 1.019623
## alpha[48]  2.6895897 0.6695310  1.6075675  3.7031164  269.8182 1.023223
## a_bar      3.2792181 0.5679393  2.3406424  4.1556466  212.2464 1.027593
## sigma_a    0.7541380 0.1496939  0.5347812  1.0019432 1667.0839 1.002098
## beta1     -0.8319445 0.3317046 -1.3523975 -0.3075241  356.5598 1.017944
## beta2      0.8391718 0.3458422  0.2770660  1.3980133  405.2542 1.017581
## beta3     -0.8984637 0.2126665 -1.2334199 -0.5494532  987.6224 1.007733
plot(precis(m.pred, depth = 2))

plot(precis(m.size, depth = 2))

plot(precis(m.cont, depth = 2))

plot(precis(m.int, depth = 2))

plot(precis(m.pred, depth = 1))
## 48 vector or matrix parameters hidden. Use depth=2 to show them.

plot(precis(m.size, depth = 1))
## 48 vector or matrix parameters hidden. Use depth=2 to show them.

plot(precis(m.cont, depth = 1))
## 48 vector or matrix parameters hidden. Use depth=2 to show them.

plot(precis(m.int, depth = 1))
## 48 vector or matrix parameters hidden. Use depth=2 to show them.

There is a lot of variation among alphas in the model when the sole predictor is size, whereas. This suggests two things: (1) that whether or not a predator is present as a better predictor of fog survival in each tank, and (2) the tank effects are in-part due to presence of predators rather than something else specific to the tanks. Additionally, based on the variation in betas for the interaction model compared to the control model, I suspect the interaction is accounting for more variation in tank effects better than the control model.

13M2. Compare the models you fit just above, using WAIC. Can you reconcile the differences in WAIC with the posterior distributions of the models?

compare(m.pred, m.size, m.cont, m.int)
##            WAIC       SE    dWAIC       dSE    pWAIC    weight
## m.pred 199.1586 7.857826 0.000000        NA 19.54749 0.3780954
## m.int  200.3103 8.911003 1.151636 3.7064892 19.32751 0.2125822
## m.size 200.3858 7.253405 1.227177 3.6702721 21.00322 0.2047026
## m.cont 200.3866 7.770532 1.227986 0.8007993 20.05174 0.2046198

The WAIC values are not very different from one another, dWAIC is smallest for the predation and interaction models with a weight around the same. Size of frog is the worst model along with controlling model based on the higher WAIC, dWAIC, and lower weights. I think the best model to use here is the interaction model–similarly to my conclusion for the comparison of plots.