R Markdown

library(httr)
library(fpp3)
## ── Attaching packages ──────────────────────────────────────────── fpp3 0.4.0 ──
## ✓ tibble      3.1.4     ✓ tsibble     1.1.1
## ✓ dplyr       1.0.7     ✓ tsibbledata 0.4.0
## ✓ tidyr       1.1.3     ✓ feasts      0.2.2
## ✓ lubridate   1.8.0     ✓ fable       0.3.1
## ✓ ggplot2     3.3.5
## Warning: package 'tsibbledata' was built under R version 4.1.2
## ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
## x lubridate::date()    masks base::date()
## x dplyr::filter()      masks stats::filter()
## x tsibble::intersect() masks base::intersect()
## x tsibble::interval()  masks lubridate::interval()
## x dplyr::lag()         masks stats::lag()
## x tsibble::setdiff()   masks base::setdiff()
## x tsibble::union()     masks base::union()
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(fable)
library(fpp2)
## ── Attaching packages ────────────────────────────────────────────── fpp2 2.4 ──
## ✓ fma       2.4     ✓ expsmooth 2.3
## 
## 
## Attaching package: 'fpp2'
## The following object is masked from 'package:fpp3':
## 
##     insurance
tsla<-read.csv("/Users/Luke/Documents/BC/Predictive Analytics/Discussion 6/TSLA.csv")
tsla$Date<-as.Date(tsla$Date)
tsla
##          Date     Open     High     Low    Close Adj.Close     Volume
## 1  0005-01-17   62.976   68.578  58.152   68.202    68.202  740231500
## 2  0006-01-17   68.800   77.398  66.842   72.322    72.322  929755500
## 3  0007-01-17   74.048   74.270  60.626   64.694    64.694  908200000
## 4  0008-01-17   64.600   74.000  62.244   71.180    71.180  684708000
## 5  0009-01-17   71.224   77.922  67.080   68.220    68.220  557563500
## 6  0010-01-17   68.504   72.600  63.332   66.306    66.306  615183500
## 7  0011-01-17   66.450   66.522  58.526   61.770    61.770  744064000
## 8  0012-01-17   61.088   69.488  60.000   62.270    62.270  549423500
## 9  0001-01-18   62.400   72.100  61.136   70.862    70.862  621357500
## 10 0002-01-18   70.200   71.998  58.952   68.612    68.612  545950000
## 11 0003-01-18   69.002   69.734  49.642   53.226    53.226  786342500
## 12 0004-01-18   51.252   61.900  48.918   58.780    58.780  951554000
## 13 0005-01-18   58.702   62.598  54.684   56.946    56.946  777890500
## 14 0006-01-18   57.172   74.746  56.768   68.590    68.590 1067125500
## 15 0007-01-18   72.014   72.956  57.226   59.628    59.628  861641000
## 16 0008-01-18   59.598   77.492  57.640   60.332    60.332 1386801000
## 17 0009-01-18   59.388   62.992  50.450   52.954    52.954  980377000
## 18 0010-01-18   61.154   69.432  49.554   67.464    67.464 1431803500
## 19 0011-01-18   67.652   73.350  65.000   70.096    70.096  665095500
## 20 0012-01-18   72.000   75.898  58.818   66.560    66.560  732256000
## 21 0001-01-19   61.220   70.400  55.856   61.404    61.404  878260500
## 22 0002-01-19   61.084   64.848  57.754   63.976    63.976  642750500
## 23 0003-01-19   61.388   61.426  50.892   55.972    55.972 1068967500
## 24 0004-01-19   56.524   59.234  46.226   47.738    47.738 1153736500
## 25 0005-01-19   47.770   51.670  36.820   37.032    37.032 1412994000
## 26 0006-01-19   37.102   46.948  35.398   44.692    44.692 1074853000
## 27 0007-01-19   46.042   53.214  44.444   48.322    48.322  996683500
## 28 0008-01-19   48.530   48.902  42.200   45.122    45.122  668953000
## 29 0009-01-19   44.816   50.700  43.672   48.174    48.174  678876500
## 30 0010-01-19   48.300   68.168  44.856   62.984    62.984 1139913000
## 31 0011-01-19   63.264   72.240  61.852   65.988    65.988  788854000
## 32 0012-01-19   65.880   87.062  65.450   83.666    83.666 1035400000
## 33 0001-01-20   84.900  130.600  84.342  130.114   130.114 2036092500
## 34 0002-01-20  134.738  193.798 122.304  133.598   133.598 2362934000
## 35 0003-01-20  142.252  161.396  70.102  104.800   104.800 2104675000
## 36 0004-01-20  100.800  173.964  89.280  156.376   156.376 1907387500
## 37 0005-01-20  151.000  168.658 136.608  167.000   167.000 1363518000
## 38 0006-01-20  171.600  217.538 170.820  215.962   215.962 1278863500
## 39 0007-01-20  216.600  358.998 216.100  286.152   286.152 1893167500
## 40 0008-01-20  289.840  500.140 273.000  498.320   498.320 1557378400
## 41 0009-01-20  502.140  502.490 329.880  429.010   429.010 1736284800
## 42 0010-01-20  440.760  465.900 379.110  388.040   388.040  833666400
## 43 0011-01-20  394.000  607.800 392.300  567.600   567.600  782598800
## 44 0012-01-20  597.590  718.720 541.210  705.670   705.670 1196346000
## 45 0001-01-21  719.460  900.400 717.190  793.530   793.530  705694800
## 46 0002-01-21  814.290  880.500 619.000  675.500   675.500  522857900
## 47 0003-01-21  690.110  721.110 539.490  667.930   667.930  942452400
## 48 0004-01-21  688.370  780.790 659.420  709.440   709.440  678539700
## 49 0005-01-21  703.800  706.000 546.980  625.220   625.220  625175800
## 50 0006-01-21  627.800  697.620 571.220  679.700   679.700  519921900
## 51 0007-01-21  683.920  700.000 620.460  687.200   687.200  448449800
## 52 0008-01-21  700.000  740.390 648.840  735.720   735.720  381324900
## 53 0009-01-21  734.080  799.000 708.850  775.480   775.480  390171300
## 54 0010-01-21  778.400 1115.210 763.590 1114.000  1114.000  528934600
## 55 0011-01-21 1145.000 1243.490 978.600 1144.760  1144.760  649111500
## 56 0012-01-21 1160.700 1172.840 886.120 1056.780  1056.780  510055900
## 57 0001-01-22 1147.750 1208.000 792.010  936.720   936.720  638668800
## 58 0002-01-22  935.210  947.770 700.000  870.430   870.430  463708900
## 59 0003-01-22  869.680 1114.770 756.040 1077.600  1077.600  576424300
## 60 0004-01-22 1081.150 1152.870 973.100 1008.780  1008.780  318709200
vwagy<-read.csv("/Users/Luke/Documents/BC/Predictive Analytics/Discussion 6/VWAGY.csv")

new<-data.frame(vwagy$Adj.Close, tsla$Adj.Close)
evts<-ts(new)
evts %>% autoplot()

evts
## Time Series:
## Start = 1 
## End = 60 
## Frequency = 1 
##    vwagy.Adj.Close tsla.Adj.Close
##  1        14.94100         68.202
##  2        14.80072         72.322
##  3        14.95526         64.694
##  4        14.71275         71.180
##  5        16.07512         68.220
##  6        17.82744         66.306
##  7        19.74380         61.770
##  8        19.22786         62.270
##  9        21.13234         70.862
## 10        18.90688         68.612
## 11        19.04002         53.226
## 12        19.32059         58.780
## 13        17.69429         56.946
## 14        15.69233         68.590
## 15        16.43415         59.628
## 16        15.21680         60.332
## 17        16.44366         52.954
## 18        15.62575         67.464
## 19        15.77317         70.096
## 20        14.83638         66.560
## 21        16.51974         61.404
## 22        16.74799         63.976
## 23        15.44505         55.972
## 24        17.00002         47.738
## 25        15.00757         37.032
## 26        16.26296         44.692
## 27        16.13932         48.322
## 28        15.45457         45.122
## 29        16.29149         48.174
## 30        18.01289         62.984
## 31        18.07471         65.988
## 32        18.34576         83.666
## 33        17.38520        130.114
## 34        15.98715        133.598
## 35        12.45876        104.800
## 36        14.20869        156.376
## 37        15.00757        167.000
## 38        15.38324        215.962
## 39        14.85540        286.152
## 40        17.05233        498.320
## 41        16.87163        429.010
## 42        14.80785        388.040
## 43        18.23323        567.600
## 44        20.48291        705.670
## 45        20.75798        793.530
## 46        23.00569        675.500
## 47        35.66089        667.930
## 48        31.15170        709.440
## 49        35.52827        625.220
## 50        32.30110        679.700
## 51        32.60565        687.200
## 52        33.43000        735.720
## 53        31.12000        775.480
## 54        32.61000       1114.000
## 55        27.85000       1144.760
## 56        29.20000       1056.780
## 57        28.74000        936.720
## 58        25.79000        870.430
## 59        24.67000       1077.600
## 60        23.51800       1008.780
library(vars)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following objects are masked from 'package:fma':
## 
##     cement, housing, petrol
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following object is masked from 'package:tsibble':
## 
##     index
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: urca
## Loading required package: lmtest
## 
## Attaching package: 'vars'
## The following object is masked from 'package:fable':
## 
##     VAR
VAR <- VAR(evts)
summary(VAR)
## 
## VAR Estimation Results:
## ========================= 
## Endogenous variables: vwagy.Adj.Close, tsla.Adj.Close 
## Deterministic variables: const 
## Sample size: 59 
## Log Likelihood: -471.341 
## Roots of the characteristic polynomial:
## 1.005 0.7946
## Call:
## VAR(y = evts)
## 
## 
## Estimation results for equation vwagy.Adj.Close: 
## ================================================ 
## vwagy.Adj.Close = vwagy.Adj.Close.l1 + tsla.Adj.Close.l1 + const 
## 
##                    Estimate Std. Error t value Pr(>|t|)    
## vwagy.Adj.Close.l1 0.808495   0.080864   9.998  4.6e-14 ***
## tsla.Adj.Close.l1  0.002602   0.001468   1.772   0.0818 .  
## const              3.152424   1.317699   2.392   0.0201 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 2.382 on 56 degrees of freedom
## Multiple R-Squared: 0.8625,  Adjusted R-squared: 0.8575 
## F-statistic: 175.6 on 2 and 56 DF,  p-value: < 2.2e-16 
## 
## 
## Estimation results for equation tsla.Adj.Close: 
## =============================================== 
## tsla.Adj.Close = vwagy.Adj.Close.l1 + tsla.Adj.Close.l1 + const 
## 
##                    Estimate Std. Error t value Pr(>|t|)    
## vwagy.Adj.Close.l1  1.05114    2.60118   0.404    0.688    
## tsla.Adj.Close.l1   0.99092    0.04722  20.987   <2e-16 ***
## const              -2.17395   42.38714  -0.051    0.959    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 76.63 on 56 degrees of freedom
## Multiple R-Squared: 0.956,   Adjusted R-squared: 0.9544 
## F-statistic: 607.8 on 2 and 56 DF,  p-value: < 2.2e-16 
## 
## 
## 
## Covariance matrix of residuals:
##                 vwagy.Adj.Close tsla.Adj.Close
## vwagy.Adj.Close           5.675             16
## tsla.Adj.Close           15.999           5872
## 
## Correlation matrix of residuals:
##                 vwagy.Adj.Close tsla.Adj.Close
## vwagy.Adj.Close         1.00000        0.08765
## tsla.Adj.Close          0.08765        1.00000
VAR_fc <- VAR %>% forecast(h=12)
VAR_fc %>% autoplot(tsla)

VAR_fc %>% autoplot(vwagy)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.