4/12/2022
setwd("~/Desktop/R data")
Mastersheet_ADK_Se_Hg_Honors <- read.csv("Mastersheet-ADK Se-Hg Honors.csv")
colnames(Mastersheet_ADK_Se_Hg_Honors)
## [1] "my_ID" "pH" "hypo_DO" ## [4] "chl_a" "phyto_se_1" "phyto_se_2" ## [7] "EF" "water_se_avg" "WS_SA" ## [10] "Waterbody" "year" "species" ## [13] "TL" "origin" "length" ## [16] "Fish_Wt" "percent_moisture" "THg_DW" ## [19] "THg_WW" "THg_WW_Avg_Moisture" "log10THg" ## [22] "THg_ww_plug" "Se_ICP_ppb" "Se_ICP_ppm" ## [25] "Sample_Se_DW" "Se_divided_by_mm" "Hg_divided_by_mm" ## [28] "Se_Hg_ratio" "delta_N" "delta_C" ## [31] "lake_zoop_deltaN" "lake_zoop_deltaC" "TL_calc" ## [34] "adj_THg_ww_plug" "Hg_TMS" "Hg_TMF" ## [37] "Prey_avg_SeHg" "log10Se" "DOC_s"
library(ggplot2) library(ggpubr) library(devtools)
## Loading required package: usethis
library(data.table) library(dplyr)
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table': ## ## between, first, last
## The following objects are masked from 'package:stats': ## ## filter, lag
## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union
pHbarplot
Look for differences in low trophic level (TL) fish sizes to see if they are comparable among water bodies Note: fish can be compared using size as a proxy for exposure time to a toxin i.e. Mercury(Hg)
Create regression and get equation to size adjust Hg values based on the mean length
Check if size adjusted prey Hg is lognormal
Find Hg TMS by plotting Hg vs delta N
See if Hg TMS are statistically different among sites that vary in pH
lowTL<-Mastersheet_ADK_Se_Hg_Honors %>% filter(TL == "low") head(lowTL)
## my_ID pH hypo_DO chl_a phyto_se_1 phyto_se_2 EF water_se_avg ## 1: BL-YP-01 7.41 NA 13.300 0.2778867 0.2404661 6.038082 4.29236e-05 ## 2: BL-YP-02 7.41 NA 13.300 0.2778867 0.2404661 6.038082 4.29236e-05 ## 3: BL-YP-03 7.41 NA 13.300 0.2778867 0.2404661 6.038082 4.29236e-05 ## 4: BL-YP-04 7.41 NA 13.300 0.2778867 0.2404661 6.038082 4.29236e-05 ## 5: BL-YP-05 7.41 NA 13.300 0.2778867 0.2404661 6.038082 4.29236e-05 ## 6: FL-YP-01 6.51 7.68 1.946 0.9617706 NA 18.368422 5.23600e-05 ## WS_SA Waterbody year species TL origin length Fish_Wt ## 1: 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet 224 148 ## 2: 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet 228 166 ## 3: 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet 187 82 ## 4: 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet 194 102 ## 5: 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet 193 84 ## 6: 8.2 Francis Lake 2014 YP low Charley- Fillet 218 104 ## percent_moisture THg_DW THg_WW THg_WW_Avg_Moisture log10THg THg_ww_plug ## 1: 82.24877487 0.6647429 0.118 n/a -1.9876691 0.13701442 ## 2: 82.88155569 0.7652565 0.131 n/a -1.8833863 0.15207426 ## 3: 85.83355246 0.8117773 0.115 n/a -2.0133649 0.13353857 ## 4: 79.06571132 0.5206769 0.109 n/a -2.0668313 0.12658626 ## 5: 86.60999426 0.4092605 0.0548 n/a -2.7529761 0.06373789 ## 6: 80.7 2.3904800 0.4536 0.577139 -0.6441003 0.52513477 ## Se_ICP_ppb Se_ICP_ppm Sample_Se_DW Se_divided_by_mm Hg_divided_by_mm ## 1: 2.373204 0.002373204 1.2220743 0.015477132 0.000683057 ## 2: 1.413760 0.001413760 0.7316897 0.009266587 0.000758135 ## 3: 1.761470 0.001761470 0.9140867 0.011576580 0.000665729 ## 4: 2.231434 0.002231434 1.0749525 0.013613886 0.000631070 ## 5: 2.455623 0.002455623 1.2242224 0.015504336 0.000317752 ## 6: 3.730000 0.003730000 1.9631862 0.024863047 0.002617951 ## Se_Hg_ratio delta_N delta_C lake_zoop_deltaN lake_zoop_deltaC TL_calc ## 1: 4.02 11.516846 -28.31252 1.68 -28.23704 4.893646 ## 2: 2.09 9.951286 -27.75586 1.68 -28.23704 4.433187 ## 3: 2.46 10.229079 -27.64202 1.68 -28.23704 4.514891 ## 4: 4.52 10.192370 -27.37382 1.68 -28.23704 4.504094 ## 5: 6.53 10.939434 -26.83743 1.68 -28.23704 4.723819 ## 6: 1.83 9.096081 -29.21649 3.86 -33.41000 3.540024 ## adj_THg_ww_plug Hg_TMS Hg_TMF Prey_avg_SeHg log10Se DOC_s ## 1: 2.860124 0.50820 3.222552 3.93 0.20054970 5.1 ## 2: 2.399665 0.50820 3.222552 3.93 -0.31239873 5.1 ## 3: 2.481369 0.50820 3.222552 3.93 -0.08982983 5.1 ## 4: 2.470572 0.50820 3.222552 3.93 0.07227644 5.1 ## 5: 2.690297 0.50820 3.222552 3.93 0.20230585 5.1 ## 6: 1.530802 0.61711 4.141045 3.14 0.67456877 7.1
aovpreylength<-aov(length~Waterbody, data = lowTL) summary(aov(length~Waterbody, data = lowTL))
## Df Sum Sq Mean Sq F value Pr(>F) ## Waterbody 5 22415 4483 15.64 1.32e-06 *** ## Residuals 22 6306 287 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(multcompView) lowTLlengthtukey<-TukeyHSD(aov(length~Waterbody, data = lowTL)) tukey.cld.preylength <- multcompLetters4(aovpreylength, lowTLlengthtukey) print(tukey.cld.preylength)
## $Waterbody ## Horseshoe Lake Francis Lake Rock Pond Halfmoon Lake ## "a" "ab" "ab" "b" ## Butterfield Lake Moss Lake ## "b" "c"
Now, we can see that prey fish from Horseshoe lake and Moss lake have significant diffferences in length and thus will need to be size adjusted using a regression model.
noHLorML_lowTL<-filter(lowTL, Waterbody != "Moss Lake" & Waterbody!= "Horseshoe Lake") droplevels
## function (x, ...)
## UseMethod("droplevels")
## <bytecode: 0x7fb4a2061e78>
## <environment: namespace:base>
print(noHLorML_lowTL)
## my_ID pH hypo_DO chl_a phyto_se_1 phyto_se_2 EF ## 1: BL-YP-01 7.41 NA 13.300000 0.2778867 0.2404661 6.038082 ## 2: BL-YP-02 7.41 NA 13.300000 0.2778867 0.2404661 6.038082 ## 3: BL-YP-03 7.41 NA 13.300000 0.2778867 0.2404661 6.038082 ## 4: BL-YP-04 7.41 NA 13.300000 0.2778867 0.2404661 6.038082 ## 5: BL-YP-05 7.41 NA 13.300000 0.2778867 0.2404661 6.038082 ## 6: FL-YP-01 6.51 7.68 1.946000 0.9617706 NA 18.368422 ## 7: FL-YP-02 6.51 7.68 1.946000 0.9617706 NA 18.368422 ## 8: FL-YP-03 6.51 7.68 1.946000 0.9617706 NA 18.368422 ## 9: FL-YP-04 6.51 7.68 1.946000 0.9617706 NA 18.368422 ## 10: FL-YP-05 6.51 7.68 1.946000 0.9617706 NA 18.368422 ## 11: HML-YP-01 5.51 0.23 5.285714 2.0726858 NA 38.287352 ## 12: HML-YP-02 5.51 0.23 5.285714 2.0726858 NA 38.287352 ## 13: HML-YP-03 5.51 0.23 5.285714 2.0726858 NA 38.287352 ## 14: HML-YP-04 5.51 0.23 5.285714 2.0726858 NA 38.287352 ## 15: HML-YP-05 5.51 0.23 5.285714 2.0726858 NA 38.287352 ## 16: RP-YP-01 5.21 5.33 2.765432 0.8677076 NA 9.568370 ## 17: RP-YP-02 5.21 5.33 2.765432 0.8677076 NA 9.568370 ## 18: RP-YP-03 5.21 5.33 2.765432 0.8677076 NA 9.568370 ## 19: RP-YP-04 5.21 5.33 2.765432 0.8677076 NA 9.568370 ## water_se_avg WS_SA Waterbody year species TL origin ## 1: 4.29236e-05 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet ## 2: 4.29236e-05 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet ## 3: 4.29236e-05 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet ## 4: 4.29236e-05 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet ## 5: 4.29236e-05 4.1 Butterfield Lake 2016 YP low D.E.C.-Standard Filet ## 6: 5.23600e-05 8.2 Francis Lake 2014 YP low Charley- Fillet ## 7: 5.23600e-05 8.2 Francis Lake 2014 YP low Charley- Plug ## 8: 5.23600e-05 8.2 Francis Lake 2014 YP low Charley- Plug ## 9: 5.23600e-05 8.2 Francis Lake 2014 YP low Charley- Plug ## 10: 5.23600e-05 8.2 Francis Lake 2014 YP low Charley- Plug ## 11: 5.41350e-05 20.8 Halfmoon Lake 2016 YP low Charley- Plug ## 12: 5.41350e-05 20.8 Halfmoon Lake 2016 YP low Charley- Plug ## 13: 5.41350e-05 20.8 Halfmoon Lake 2016 YP low Charley- Plug ## 14: 5.41350e-05 20.8 Halfmoon Lake 2016 YP low Charley- Plug ## 15: 5.41350e-05 20.8 Halfmoon Lake 2016 YP low Charley- Plug ## 16: 9.06850e-05 22.0 Rock Pond 2016 YP low Charley- Plug ## 17: 9.06850e-05 22.0 Rock Pond 2016 YP low Charley- Plug ## 18: 9.06850e-05 22.0 Rock Pond 2016 YP low Charley- Plug ## 19: 9.06850e-05 22.0 Rock Pond 2016 YP low Charley- Plug ## length Fish_Wt percent_moisture THg_DW THg_WW THg_WW_Avg_Moisture ## 1: 224 148 82.24877487 0.6647429 0.118 n/a ## 2: 228 166 82.88155569 0.7652565 0.131 n/a ## 3: 187 82 85.83355246 0.8117773 0.115 n/a ## 4: 194 102 79.06571132 0.5206769 0.109 n/a ## 5: 193 84 86.60999426 0.4092605 0.0548 n/a ## 6: 218 104 80.7 2.3904800 0.4536 0.577139 ## 7: 260 210 87.7 3.3116300 0.4084 0.659978 ## 8: 204 88 74.3 1.1745500 0.3015 0.234077 ## 9: 235 138 81.9 2.3024300 0.4165 0.458854 ## 10: 236 130 78.6 4.0089890 0.8569 0.798956 ## 11: 210 128 n/a 1.3910000 n/a 0.2803 ## 12: 209 110 n/a 2.0640000 n/a 0.416 ## 13: 205 120 n/a 1.3320000 n/a 0.2684 ## 14: 211 116 n/a 1.5210000 n/a 0.3065 ## 15: 200 102 n/a 1.5950000 n/a 0.3214 ## 16: 204 92 81.1 1.6500000 0.31185 0.3111 ## 17: 248 178 79.5 5.0300000 1.03115 1.0331 ## 18: 227 134 80.7 6.3100000 1.21783 1.2244 ## 19: 207 94 81.5 1.6300000 0.30155 0.3167 ## log10THg THg_ww_plug Se_ICP_ppb Se_ICP_ppm Sample_Se_DW ## 1: -1.98766910 0.13701442 2.373204 0.002373204 1.2220743 ## 2: -1.88338633 0.15207426 1.413760 0.001413760 0.7316897 ## 3: -2.01336494 0.13353857 1.761470 0.001761470 0.9140867 ## 4: -2.06683130 0.12658626 2.231434 0.002231434 1.0749525 ## 5: -2.75297614 0.06373789 2.455623 0.002455623 1.2242224 ## 6: -0.64410034 0.52513477 3.730000 0.003730000 1.9631862 ## 7: -0.41554878 0.65997800 5.120000 0.005120000 2.7059653 ## 8: -1.45210516 0.23407700 4.590000 0.004590000 3.0952568 ## 9: -0.77902320 0.45885400 1.350000 0.001350000 2.3630706 ## 10: -0.22444940 0.79895600 4.330000 0.004330000 2.3099038 ## 11: -1.27189482 0.28030000 4.979420 0.004979424 2.4188961 ## 12: -0.87707002 0.41600000 3.833150 0.003833147 3.8399879 ## 13: -1.31527687 0.26840000 4.348470 0.004348473 2.1950371 ## 14: -1.18253752 0.30650000 3.268080 0.003268081 1.6981022 ## 15: -1.13506883 0.32140000 5.377940 0.005377943 2.5209572 ## 16: -1.16764088 0.31110000 2.299780 0.002299776 1.1385577 ## 17: 0.03256399 1.03310000 2.619320 0.002619322 1.3586544 ## 18: 0.20245093 1.22440000 2.157330 0.002157329 1.1134991 ## 19: -1.14980032 0.31670000 2.298090 0.002298085 1.2048105 ## Se_divided_by_mm Hg_divided_by_mm Se_Hg_ratio delta_N delta_C ## 1: 0.015477132 0.000683057 4.02 11.516846 -28.31252 ## 2: 0.009266587 0.000758135 2.09 9.951286 -27.75586 ## 3: 0.011576580 0.000665729 2.46 10.229079 -27.64202 ## 4: 0.013613886 0.000631070 4.52 10.192370 -27.37382 ## 5: 0.015504336 0.000317752 6.53 10.939434 -26.83743 ## 6: 0.024863047 0.002617951 1.83 9.096081 -29.21649 ## 7: 0.034270077 0.003290184 1.28 9.600077 -29.88216 ## 8: 0.039200314 0.001166943 8.63 8.153571 -29.15088 ## 9: 0.029927439 0.002287522 2.37 9.330221 -29.53968 ## 10: 0.029254101 0.003983030 1.57 9.303434 -28.72447 ## 11: 0.030634450 0.001397378 4.38 8.405568 -31.46434 ## 12: 0.048632065 0.002073882 4.69 7.848991 -29.76543 ## 13: 0.027799355 0.001338053 4.16 7.889668 -33.35717 ## 14: 0.021505854 0.001527992 2.81 8.614905 -31.45662 ## 15: 0.031927016 0.001602273 3.99 8.164484 -30.64527 ## 16: 0.014419424 0.001550925 1.76 7.598978 -33.84726 ## 17: 0.017206870 0.005150307 0.68 9.305418 -30.01240 ## 18: 0.014102065 0.006103993 0.45 9.909617 -31.10739 ## 19: 0.015258491 0.001578842 1.79 8.205161 -33.38515 ## lake_zoop_deltaN lake_zoop_deltaC TL_calc adj_THg_ww_plug Hg_TMS Hg_TMF ## 1: 1.680000 -28.23704 4.893646 2.860124 0.50820 3.222552 ## 2: 1.680000 -28.23704 4.433187 2.399665 0.50820 3.222552 ## 3: 1.680000 -28.23704 4.514891 2.481369 0.50820 3.222552 ## 4: 1.680000 -28.23704 4.504094 2.470572 0.50820 3.222552 ## 5: 1.680000 -28.23704 4.723819 2.690297 0.50820 3.222552 ## 6: 3.860000 -33.41000 3.540024 1.530802 0.61711 4.141045 ## 7: 3.860000 -33.41000 3.688258 1.679036 0.61711 4.141045 ## 8: 3.860000 -33.41000 3.262815 1.253593 0.61711 4.141045 ## 9: 3.860000 -33.41000 3.608889 1.599666 0.61711 4.141045 ## 10: 3.860000 -33.41000 3.601010 1.591788 0.61711 4.141045 ## 11: 3.446474 -32.16594 3.458557 1.444729 0.66610 4.635536 ## 12: 3.446474 -32.16594 3.294858 1.281030 0.66610 4.635536 ## 13: 3.446474 -32.16594 3.306822 1.292993 0.66610 4.635536 ## 14: 3.446474 -32.16594 3.520127 1.506298 0.66610 4.635536 ## 15: 3.446474 -32.16594 3.387650 1.373822 0.66610 4.635536 ## 16: 3.200000 -38.58500 3.293817 1.277243 0.79820 6.283477 ## 17: 3.200000 -38.58500 3.795711 1.779137 0.79820 6.283477 ## 18: 3.200000 -38.58500 3.973417 1.956843 0.79820 6.283477 ## 19: 3.200000 -38.58500 3.472106 1.455532 0.79820 6.283477 ## Prey_avg_SeHg log10Se DOC_s ## 1: 3.93 0.20054970 5.1 ## 2: 3.93 -0.31239873 5.1 ## 3: 3.93 -0.08982983 5.1 ## 4: 3.93 0.07227644 5.1 ## 5: 3.93 0.20230585 5.1 ## 6: 3.14 0.67456877 7.1 ## 7: 3.14 0.99545870 7.1 ## 8: 3.14 1.12987087 7.1 ## 9: 3.14 0.85996188 7.1 ## 10: 3.14 0.83720590 7.1 ## 11: 4.01 0.88331130 9.8 ## 12: 4.01 1.34546921 9.8 ## 13: 4.01 0.78619894 9.8 ## 14: 4.01 0.52951127 9.8 ## 15: 4.01 0.92463866 9.8 ## 16: 1.17 0.12976231 21.4 ## 17: 1.17 0.30649483 21.4 ## 18: 1.17 0.10750736 21.4 ## 19: 1.17 0.18632227 21.4
ggplot(noHLorML_lowTL, aes(x = length, y = THg_ww_plug , color = Waterbody)) + geom_point()+ geom_smooth(method="lm", col="black", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
fit.noHLorML_lowTL<-lm(THg_ww_plug~length, noHLorML_lowTL ) fitsumm<-summary(fit.noHLorML_lowTL) print(fitsumm$coefficients)
## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -1.95651729 0.635912938 -3.076706 0.006837257 ## length 0.01096139 0.002935714 3.733805 0.001652008
print(Mastersheet_ADK_Se_Hg_Honors$"adj_THg_ww_plug")
## [1] NA NA NA NA NA NA NA 2.860124 ## [9] 2.399665 2.481369 2.470572 2.690297 NA NA NA NA ## [17] NA 1.530802 1.679036 1.253593 1.599666 1.591788 NA NA ## [25] NA NA 2.380531 2.280153 2.474782 2.555319 NA NA ## [33] NA 1.444729 1.281030 1.292993 1.506298 1.373822 NA NA ## [41] NA NA NA 2.207956 2.095030 2.174691 2.243556 2.001363 ## [49] NA NA NA NA 1.277243 1.779137 1.956843 1.455532
Hg_lowTL_adj
res_lowadj<-resid(lm_Hg_lowTL_adj) plot(fitted(lm_Hg_lowTL_adj),res_lowadj) abline(0,0)
> - Look at q-q plot?
qqnorm(res_lowadj) qqline(res_lowadj)
-I plotted each individual TMS -used delta 15N stable isotope data and log10THg
BLTL<-Mastersheet_ADK_Se_Hg_Honors %>% filter(Waterbody == "Butterfield Lake")
BL_TMS<-ggplot(BLTL, aes(x = delta_N, y = log10THg)) + geom_point(color="black")+labs(x="δ15N", y= "log10THg (ppm, WW)")+
geom_smooth(method=lm, se=FALSE, color="tomato")+
theme(axis.text.x=element_text(size=8),panel.border = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
annotate("text", x = 11.8, y = 0, parse = TRUE, size = 2,label = as.character(expression(paste(italic(R)^{2}~"="~"0.53,"~italic(p)~"="~"0.004"))))+
rremove("legend")+
annotate("text", x = 11.8, y = -0.15, parse = TRUE, size = 2,label = as.character(expression(paste(Y~"="~"-0.08(x)+0.78"))))
BL_TMS
## `geom_smooth()` using formula 'y ~ x'
HMLTL<-Mastersheet_ADK_Se_Hg_Honors %>% filter(Waterbody == "Halfmoon Lake")
HML_TMS<-ggplot(HMLTL, aes(x = delta_N, y = log10THg)) + geom_point(color="black")+
labs(x="δ15N", y= "log10THg (ppm, WW)")+
geom_smooth(method=lm, se=FALSE, color="green4")+
theme(axis.text.x=element_text(size=8),panel.border = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
annotate("text", x = 8.8, y = 0.2, parse = TRUE, size = 2,label = as.character(expression(paste(italic(R)^{2}~"="~"0.79,"~italic(p)~"="~"0.002"))))+
rremove("legend")+
annotate("text", x = 8.8, y = 0.1, parse = TRUE, size = 2,label = as.character(expression(paste(Y~"="~"-0.32(x)+3.5"))))
## `geom_smooth()` using formula 'y ~ x'
ggarrange(FL_TMS, RP_TMS,HML_TMS, HL_TMS,ML_TMS, BL_TMS, ncol= 3,nrow = 2)
hgTMS_ancova<-aov(log10THg+delta_N~Waterbody, data = Mastersheet_ADK_Se_Hg_Honors) summary(hgTMS_ancova)
## Df Sum Sq Mean Sq F value Pr(>F) ## Waterbody 5 33.4 6.681 3.313 0.0116 * ## Residuals 50 100.8 2.017 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1