Descripcion demografica
y Univariante
print(tab1, method = 'render', table.classes = 'st-small')
Descriptivo variables
apache, sonda, dias ventilacion mecanica, glasgow
##
## no si
## 77 265
## Outcome + Outcome - Total Inc risk * Odds
## Exposed + 156 109 265 58.9 1.4312
## Exposed - 2 75 77 2.6 0.0267
## Total 158 184 342 46.2 0.8587
##
## Point estimates and 95% CIs:
## -------------------------------------------------------------------
## Inc risk ratio 22.66 (5.75, 89.32)
## Odds ratio 53.67 (12.90, 223.24)
## Attrib risk in the exposed * 56.27 (49.36, 63.18)
## Attrib fraction in the exposed (%) 95.59 (82.61, 98.88)
## Attrib risk in the population * 43.60 (37.23, 49.97)
## Attrib fraction in the population (%) 94.38 (78.20, 98.55)
## -------------------------------------------------------------------
## Uncorrected chi2 test that OR = 1: chi2(1) = 76.006 Pr>chi2 = <0.001
## Fisher exact test that OR = 1: Pr>chi2 = <0.001
## Wald confidence limits
## CI: confidence interval
## * Outcomes per 100 population units
## Warning: Removed 17 rows containing non-finite values (stat_density).

## Warning: Removed 50 rows containing non-finite values (stat_density).

## Warning: Removed 2 rows containing non-finite values (stat_density).

Regresion
logística
|
inf2
|
Predictors
|
Odds Ratios
|
CI
|
p
|
sexo=mujer
|
1.17
|
0.55 – 2.51
|
0.677
|
taba=si
|
4.90
|
2.22 – 10.81
|
<0.001
|
trin=si
|
5.42
|
1.38 – 21.22
|
0.015
|
sond=si
|
42.32
|
8.42 – 212.80
|
<0.001
|
trau=si
|
1.68
|
0.41 – 6.81
|
0.469
|
shoc=si
|
0.49
|
0.13 – 1.88
|
0.297
|
uatb=si
|
1.06
|
0.47 – 2.36
|
0.892
|
fbar=si
|
1.94
|
0.95 – 3.94
|
0.069
|
ensc=si
|
1.48
|
0.59 – 3.74
|
0.404
|
epoc=si
|
3.14
|
1.29 – 7.60
|
0.011
|
edm=si
|
0.99
|
0.45 – 2.17
|
0.974
|
ehta=si
|
1.88
|
0.88 – 4.00
|
0.104
|
ecar=si
|
1.46
|
0.65 – 3.28
|
0.356
|
apach
|
1.35
|
1.21 – 1.50
|
<0.001
|
gcs8=si
|
0.53
|
0.17 – 1.59
|
0.257
|
Observations
|
324
|
R2
|
0.695
|
## Frequencies of Missing Values Due to Each Variable
## inf2 sexo taba trin sond trau shoc uatb fbar ensc epoc edm ehta
## 1 0 1 0 3 2 2 0 0 4 4 4 4
## ecar apach gcs8
## 4 17 2
##
## Logistic Regression Model
##
## lrm(formula = modfin, data = data.frame(datis), x = T, y = T)
##
##
## Model Likelihood Discrimination Rank Discrim.
## Ratio Test Indexes Indexes
## Obs 324 LR chi2 238.42 R2 0.695 C 0.935
## 0 170 d.f. 15 g 3.928 Dxy 0.871
## 1 154 Pr(> chi2) <0.0001 gr 50.811 gamma 0.871
## max |deriv| 9e-05 gp 0.435 tau-a 0.436
## Brier 0.100
##
## Coef S.E. Wald Z Pr(>|Z|)
## Intercept -9.4553 1.4803 -6.39 <0.0001
## sexo=mujer 0.1612 0.3868 0.42 0.6769
## taba=si 1.5886 0.4040 3.93 <0.0001
## trin=si 1.6900 0.6965 2.43 0.0152
## sond=si 3.7452 0.8241 4.54 <0.0001
## trau=si 0.5176 0.7147 0.72 0.4689
## shoc=si -0.7166 0.6873 -1.04 0.2971
## uatb=si 0.0556 0.4090 0.14 0.8918
## fbar=si 0.6607 0.3628 1.82 0.0686
## ensc=si 0.3940 0.4726 0.83 0.4045
## epoc=si 1.1431 0.4513 2.53 0.0113
## edm=si -0.0131 0.4021 -0.03 0.9740
## ehta=si 0.6287 0.3866 1.63 0.1039
## ecar=si 0.3799 0.4117 0.92 0.3561
## apach 0.3009 0.0549 5.49 <0.0001
## gcs8=si -0.6409 0.5651 -1.13 0.2567
##
nomograma con variables
significativas + profilaxis AB
## Frequencies of Missing Values Due to Each Variable
## inf2 taba trin sond uatb epoc apach
## 1 1 0 3 0 4 17
##
## Logistic Regression Model
##
## lrm(formula = bwf2, data = data.frame(datis), x = T, y = T)
##
##
## Model Likelihood Discrimination Rank Discrim.
## Ratio Test Indexes Indexes
## Obs 324 LR chi2 226.73 R2 0.672 C 0.927
## 0 170 d.f. 6 g 3.676 Dxy 0.853
## 1 154 Pr(> chi2) <0.0001 gr 39.505 gamma 0.856
## max |deriv| 6e-05 gp 0.427 tau-a 0.427
## Brier 0.107
##
## Coef S.E. Wald Z Pr(>|Z|)
## Intercept -9.0327 1.2035 -7.51 <0.0001
## taba=si 1.4821 0.3471 4.27 <0.0001
## trin=si 1.1465 0.5056 2.27 0.0233
## sond=si 3.8898 0.8157 4.77 <0.0001
## uatb=si -0.0947 0.3812 -0.25 0.8038
## epoc=si 1.2405 0.4004 3.10 0.0019
## apach 0.3070 0.0501 6.13 <0.0001
##

calculadora
online